期刊文献+

熔融锂液滴与冷却剂在不同温度下的相互作用实验研究 被引量:3

Experimental Study of Molten Lithium Droplet and Coolant Interaction at Different Temperatures
下载PDF
导出
摘要 针对未来聚变装置中严重事故时可能发生的液态锂与冷却剂相互作用及爆炸过程,建立实验装置并在其上开展了熔融锂液滴与冷却剂相互作用实验研究。观测了不同初始温度下锂液滴与冷却剂相互作用的爆炸过程,对不同工况下的峰值压力进行了比较,并分析了熔融锂液滴初始温度和冷却剂初始温度对爆炸作用的影响。研究结果表明,熔融锂液滴与冷却剂接触面积的显著增大是产生压力峰值的关键因素,当熔融锂液滴温度超过300℃,冷却剂温度超过50℃时,熔融锂液滴与冷却剂相互作用爆炸强度明显增大;但是当冷却剂温度超过70℃时,爆炸反应反而受到了抑制。同时,在评估熔融锂液滴与冷却剂相互作用风险时,蒸汽爆炸作用的影响不可忽视。 In order to make a better understanding of the complicated liquid lithium water interaction and lithium-water explosion during the severe accident of the future fusion devices,an experiment facility was set up and an experiment of molten lithium droplet and coolant interaction was conducted.The process of explosion for molten lithium droplet coolant interaction at different temperatures were observed and measured.The peak pressures at different conditions were compared and the influences of initial lithium droplet temperature and initial coolant temperature were analyzed.The experimental results show that the dramatic increase of reaction area between lithium droplet and water is a key factor for the pressure peaks.More explosive reaction occurs when the lithium droplet temperature is above 300 ℃ and water temperature is above 50 ℃.But the explosion is suppressed when the initial water temperature is above 70 ℃.A phenomenon called steam explosion was observed in the experiment and it is not ignorable in the risk assessment of liquid lithium water interaction.
出处 《核科学与工程》 CSCD 北大核心 2017年第3期374-379,共6页 Nuclear Science and Engineering
基金 国家自然科学基金资助项目(No.11375116) 国家磁约束核聚变能发展研究专项(No.2013GB114005)
关键词 聚变 液态锂 冷却剂 第一壁 安全 Fusion Liquid lithium Coolant First wall Safety
  • 相关文献

参考文献2

二级参考文献20

  • 1BERTHOUD G. Vapor explosions [J]. Annual Review of Fluid Mechanics, 2000, 32(1): 573- 611.
  • 2MAGALLON D, MAILLIAT A, SEILER J M, et al. European expert network for the reduction of uncertainties in severe accident safety issues [J]. Nuclear Engineering and Design, 2005, 235 (2-4) : 309-346.
  • 3FLETCHER D F. Steam explosions triggering: A review of theoretical and experimental investigation [J]. Nuclear Engineering and Design, 1995, 155(1): 27-36.
  • 4CORRADINI M L, KIM B J. Vapor explosion in light water reactor: A review of theory and modeling[J]. Progress in Nuclear Energy, 1988, 22(1): 1-177.
  • 5PATEL P D, THEOFANOUS T G. Hydrodynamic fragmentation of drops[J].Journal of Fluid Mechanics, 1981, 103: 207-223.
  • 6PILCH M, ERDMAN C A. Use of breakup time data and velocity history data to predict the maximum six of stable fragments for acceleration-induced breakup of a liquid drop[J].International Journal of Multiphase Flow, 1987, 13(6): 741- 757.
  • 7Apicell M L,Mazzitelli G,Lazarev V B,et al.Fusion Engineering and Design,2005,(7579):351-355.
  • 8Pericoli-Ridolfini V,Apicella M L,Mazzitelli G,et al.Plasma Phys Control Fusion[J] ,2007,49:123-135.
  • 9Vertkov A,Luyblinski I,Evtikhin V,et al.Fusion Engineering and Design[J] ,2007,82:1627-1633.
  • 10Kaita R,Majeski R,Boaz M,et al.Journal of Nuclear Materials[J] ,2005,(337-339):872-876.

共引文献9

同被引文献5

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部