期刊文献+

利用稀疏盲源分离方法的叶片裂纹特征提取 被引量:3

Blade crack feature extraction by using sparse blind source separation algorithm
下载PDF
导出
摘要 叶轮是离心压缩机的核心部件,实现压缩机叶片裂纹早期故障识别在工业生产中具有非常重要的意义。有裂纹的叶片的异常振动会直接反映到流体的压力脉动中。然而实际中由叶片裂纹造成的异常振动非常小,使得压力脉动中的故障信息非常微弱,导致故障频率难以识别。先利用稀疏盲源分离方法对离心压缩机扩压器处的压力脉动信号进行处理,然后对分离的信号进行包络分析,最后提取出故障特征频率,实现了离心压缩机叶轮叶片裂纹故障检测,可以对叶轮状态进行长期实时监测。 The impeller is the core component of a centrifugal compressor, and so the realization of the identification of the compressor blade crack fault if of great significance in the industrial production. The abnormal vibration of the blade with cracks will be directly reflected in the fluid pressure pulsation. In practice, however, the abnormal vibration caused by blade cracks are very small, which usually means that it is very difficult to identify the fail frequency since the fault information in the pressure pulsation is too weak. In this paper we firstly deal with the fluid pressure pulsation signals which flow through the fault of impeller bleaching with the sparse underdetermined blind source separation algorithm. Then, the envelope analysis method is applied to the separated signals. Finally, we extract the fault characteristic frequency from the separated signals by the envelope analysis and successfully detect the blade crack fault on the centrifugal compressor impeller. This can be used for long- term health monitoring of the centrifugal compressor impeller.
出处 《振动工程学报》 EI CSCD 北大核心 2017年第3期510-518,共9页 Journal of Vibration Engineering
基金 国家自然科学基金资助项目(51575075)
关键词 信号处理 故障特征频率提取 稀疏 欠定盲源分离 叶轮叶片裂纹 signal processing extraction of the fault characteristic frequency sparse underdetermined blind source separation impeller blade crack
  • 相关文献

参考文献1

二级参考文献16

  • 1谢志江,刘军,唐一科,王雪.叶轮机械叶片故障的叶间动态间距诊断法[J].机械工程学报,2004,40(8):96-99. 被引量:9
  • 2欧阳涛 段发阶 李孟麟 等.旋转叶片固有频率测试技术的研究.测控技术,2008,(27):78-81.
  • 3HEATH S, IMREGUN M. An improved single-parameter tip-timing method for turbomachinery blade vibration measurements using optical laser pobes[J]. Int. J. Mech. Sci., 1996, 38(10): 1047-1058.
  • 4SALHI B, LARDIES J, BERTHILLIER M. Identification of modal parameters and aeroelastic coefficients in bladed disk assemblies[J]. Mechanical Systems and Signal Processing, 2009, 23(6): 1894-1908.
  • 5SALHI B, LARDIES J, BERTHILLIER M, et al. Modal parameter identification of mistuned bladed disks using tip timing data[J]. Journal of Sound and Vibration, 2008, 314(3-5): 885-906.
  • 6DIMITRIADIS G, CARRINGTON I B. Blade-tip timing measurement of synchronous vibrations of rotating bladed assemblies[J]. Mechanical Systems and Signal Processing, 2002, 16(4): 599-622.
  • 7HEALTH S. A new technique for identifying synchronous resonances using tip-timing[J]. Journal of Engineering for Gas Turbines and Power APRIL, 2000, 112: 219-225.
  • 8BEAUSEROY P , LENGELLE R. Nonintrusive turbomachine blade vibration measurement system[J]. Mechanical Systems and Signal Processing, 2007, 21 (4): 1717-1738.
  • 9RIES S. On the reconstruction of signals by a finite number of samples [J]. Signal Processing, 1991, 23(1):45-68.
  • 10RIES S. Reconstruction of real and analytic band-pass signals from a finite number of samples[J]. Signal Processing, 1993, 33(3): 237-257.

共引文献9

同被引文献27

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部