期刊文献+

计算和存储空间受限下的数据稀疏核分析方法 被引量:1

Computation and Store Space Constrained-Based Sparse Kernel Data Analysis
下载PDF
导出
摘要 针对核主成分分析算法广泛面临的训练样本数量大而带来的计算和存储空间的问题,提出了基于1类支持向量理论的稀疏核主成分分析算法,该方法适合于计算和存储空间受限下的应用场合,如小型硬件平台下的图像检索系统、医学辅助诊断系统等.通过求解最优方程找到能够代表原始样本空间的少量典型样本,这些样本作为计算核数据矩阵,大大节省了核矩阵计算的时间和存储空间成本,在有限的训练样本集上最大限度在硬件平台下图像处理领域有效提高识别率和计算效率. In order to solve the computation and storage space problems of kernel principal component analysis, which come from the large number of the training samples, this paper presents one-class support vector based sparse kernel princi- pal component analysis (SKPCA). This method can be used in the computation-constrained and space-constrained applica- tions, for example, a small scale hardware platform based image retrieval system, medical assistant diagnosis system, and so on. The method uses the constrained optimization equation to seek the few representative samples, and the few representative samples are used to compute the kernel matrix. The method decreases the computing time and decreases the storage space. So under conditions of the limited training samples, the method is to improve the performance of accuracy and efficiency for hardware computing platform-based image processing.
出处 《电子学报》 EI CAS CSCD 北大核心 2017年第6期1362-1366,共5页 Acta Electronica Sinica
关键词 主成分分析 核方法 稀疏学习 principal component analysis kernel method sparse learning
  • 相关文献

参考文献4

二级参考文献59

  • 1谌德荣,陶鹏,张立燕,范宁军.基于区域特征光谱的自组织特征映射神经网络高光谱图像主成分提取方法[J].宇航学报,2007,28(6):1689-1692. 被引量:3
  • 2耿修瑞,张霞,陈正超,张兵,郑兰芬,童庆禧.一种基于空间连续性的高光谱图像分类方法[J].红外与毫米波学报,2004,23(4):299-302. 被引量:26
  • 3于林森,张田文.基于视觉与标注相关信息的图像聚类算法[J].电子学报,2006,34(7):1265-1269. 被引量:6
  • 4James Norman Sweet. The spectral similarity scale and its application to the classification of hyperspectral remote sensing data [ D]. New York: State university of New York, College of Environmental Science and Forestry, 2002.
  • 5John Shawe-Taylor, Nello Cristianini, Kernel Methods for Pattern Analysis [M]. Cambridge University Press, New York, NY,2004.
  • 6Amit Banerjee. A Support Vector Method for Anomaly Detection in Hyperspectral Imagery[ J]. IEEE Transactions on Geosciences and Remote Sensing, August 2006,44: 8.
  • 7K Mikolajczyk, C Schmid. A performance evaluation of local descriptors[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005,27(10) : 1615 - 1630.
  • 8J Zhang, et al. Local features and kiemels for classification of texture and object categories: a comprehensive study[J]. International Journal of Computer Vision, 2007.73 (2) : 213 - 238.
  • 9R Fergus, et al. Object class recognition by unsupervised scaleinvariant learning[A]. Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition[C]. Madison: IEEE, 2003. Vol. 2:264 - 271.
  • 10B Leibe, A Leonardis, B Schiele. Combined object categorization and segmentation with and implicit shape model[ A]. ECCV'04 workshop on Statistical Learning in Computer Vision [C]. Prague: Springer, 2004.17 - 32.

共引文献67

同被引文献9

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部