期刊文献+

一种融合用户关系的自适应微博话题跟踪方法 被引量:9

A Self-Adaptive Microblog Topic Tracking Method by User Relationship
下载PDF
导出
摘要 针对微博口语化、文本短小等特点以及现有研究的不足,本文提出了一种融合用户关系的自适应微博话题跟踪方法.首先,在当前跟踪的时间窗内,推文被映射到特征空间,并作为候选推文集合.然后,针对推文的分布特点以及话题跟踪的目的,变换推文特征空间.在此基础上,利用改进的K-means聚类算法对候选推文集合进行二元聚类,从而划分出相关推文集合,即当前话题目标模型.本文通过Twitter平台获取数据进行实验,实验结果表明,该方法能够实时地跟踪话题热度的变化以及焦点的演变,并提高了微博中话题跟踪的稳定性.该方法为用户推荐、舆情分析等领域提供了有效的支撑. Considering the colloquial, short text and other characteristics of microblog and deficiencies in research of it, this article proposes a self-adaptive topic tracking method of microblog by user relationship. First of all, during the tracking time window, the candidate tweet set is mapped into feature space. Secondly, aiming at the characteristic of tweet distri- bution and the purpose of topic tracking, the paper converts the tweets' feature space. Based on this operation, a binary clus- tering on tweets set can be constructed by improved K-means clustering algorithm. The yielded relative collection is the tar- get model of the current topic. The experiments with the data extracted from Twitter, show that this method can track down the trend of hot topics and the evolution of focuses in real time, and improve the stability of topic tracking in microblog. This method serves well for user recommendation and public opinion analysis.
出处 《电子学报》 EI CAS CSCD 北大核心 2017年第6期1375-1381,共7页 Acta Electronica Sinica
基金 国家自然科学基金(No.61602474)
关键词 微博 话题跟踪 自适应 用户关系 极坐标 K-MEANS算法 microblog topic tracking self-adaptive user relationship polar coordinates K-means algorithm
  • 相关文献

参考文献4

二级参考文献45

  • 1文瑞.微博之识[J].软件工程师,2009(12):20-20. 被引量:4
  • 2骆卫华,于满泉,许洪波,王斌,程学旗.基于多策略优化的分治多层聚类算法的话题发现研究[J].中文信息学报,2006,20(1):29-36. 被引量:38
  • 3于满泉,骆卫华,许洪波,白硕.话题识别与跟踪中的层次化话题识别技术研究[J].计算机研究与发展,2006,43(3):489-495. 被引量:49
  • 4王永恒,贾焰,杨树强.大规模文本数据库中的短文分类方法[J].计算机工程与应用,2006,42(22):5-7. 被引量:4
  • 5夏天.汉语词语语义相似度计算研究[J].计算机工程,2007,33(6):191-194. 被引量:63
  • 6Zelikovitz S,Transductive M F.Learning for Short-Text Classification Problem using Latent Semantic Intexing International [J].Joumal of Pattern Recognition and Artificial Intelligence, 2005, 19(2):143-163.
  • 7Pu Qiang,Yang Guo,Wei. Short-Text Classification Based on ICA and LSA [J]Proceedings of International Symposium on Neural Networks,2005, (ISNN 2):265-270.
  • 8P.W.Lord, R.D.Stevens, A.Brass, C.A.Goble, Semantic Similarity Measures as Tools for Exploring the Genge Ontology[J] Proceedings of the 8th Pacific Symposium on Biocomputing, 2003.
  • 9Bollegala D, Matsuo Y, Ishizuka M. Measuring Semantic Similarity between Words Using Web Search Engines//Proc of the 16th Inter- national Conference on World Wide Web. Banff, Canada, 2007: 757 - 766.
  • 10Sahami M, Heilman T D. A Web-Based Kernel Function for Meas- uring the Similarity of Short Text Snippets//Pmc of the 15th Inter- national Conference on World Wide Web. Edinburgh, UK, 2006: 377 - 386.

共引文献111

同被引文献69

引证文献9

二级引证文献59

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部