期刊文献+

基于混合属性的零样本图像分类 被引量:6

Hybrid Attribute-Based Zero-Shot Image Classification
下载PDF
导出
摘要 对于具有相似属性的类别而言,在有限维度的语义属性下,基于属性的零样本图像分类器难以对它们进行正确区分.考虑到语义属性描述类别的有限性,在直接属性预测(Direct Attribute Prediction,DAP)模型的基础上,提出一种基于混合属性的零样本图像分类模型(Hybrid Attribute-Based DAP,HA-DAP).首先,对样本的底层特征进行稀疏编码并利用编码后的非语义属性来辅助现有的语义属性;将非语义属性与语义属性构成混合属性并将其作为DAP模型的属性中间层,利用属性预测模型的思想进行混合属性分类器的训练;最后,根据预测的混合属性以及属性与类别之间的关系进行测试样本类别标签的预测.在OSR、Pub Fig以及Shoes数据集上的实验结果表明,HA-DAP的分类性能优于DAP,不仅能够取得较高的零样本图像分类精度,而且还获得了较高的AUC值. When the dimensionality of the semantic attributes is limited,it is difficult for attribute-based zero-shot image classifiers to distinguish the objects with similar attributes. Aiming at the limitation of describing objects with semantic attributes, an improved direct attribute prediction(DAP) model for zero-shot image classifying based on hybrid attribute(HA) is proposed, which is called HA-DAP. At first, we carry out the sparse coding on the low-level features to obtain the non-semantic attributes that are used to assist the existing semantic attributes. Then,we take the hybrid attributes including the learned non- semantic attributes and the manually specified semantic attributes as the mid-layer of DAP model and use the idea of attribute prediction to train the hybrid attribute-based classifier. At last ,according to the predicted hybrid attributes and the relationship between the attributes and classes, we can recognize the class label for the testing sample. Experimental results on the OSR,Pub Fig and Shoes datasets show that, the HA-DAP outperforms the DAP in the classification performance, i. e. , when compared with the DAP,the proposed HA-DAP yields much higher zero-shot image classification accuracy and AUC value.
出处 《电子学报》 EI CAS CSCD 北大核心 2017年第6期1462-1468,共7页 Acta Electronica Sinica
基金 国家自然科学基金(No.61472424 No.61273143) 中央高校基本科研业务费(No.2013RC10 No.2013RC12 No.2014YC07)
关键词 零样本图像分类 混合属性 语义属性 非语义属性 稀疏编码 zero-shot image classification hybrid attribute semantic attribute non-semantic attribute sparse auto-encoding
  • 相关文献

参考文献4

二级参考文献133

  • 1张春梅,尹忠科,肖明霞.基于冗余字典的信号超完备表示与稀疏分解[J].科学通报,2006,51(6):628-633. 被引量:71
  • 2R Baraniuk.A lecture on compressive sensing[J].IEEE Signal Processing Magazine,2007,24(4):118-121.
  • 3Guangming Shi,Jie Lin,Xuyang Chen,Fei Qi,Danhua Liu and Li Zhang.UWB echo signal detection with ultra low rate sampling based on compressed sensing[J].IEEE Trans.On Circuits and Systems-Ⅱ:Express Briefs,2008,55(4):379-383.
  • 4Cand,S E J.Ridgelets:theory and applications[I)].Stanford.Stanford University.1998.
  • 5E Candès,D L Donoho.Curvelets[R].USA:Department of Statistics,Stanford University.1999.
  • 6E L Pennec,S Mallat.Image compression with geometrical wavelets[A].Proc.of IEEE International Conference on Image Processing,ICIP'2000[C].Vancouver,BC:IEEE Computer Society,2000.1:661-664.
  • 7Do,Minh N,Vetterli,Martin.Contourlets:A new directional multiresolution image representation[A].Conference Record of the Asilomar Conference on Signals,Systems and Computers[C].Pacific Groove,CA,United States:IEEE Computer Society.2002.1:497-501.
  • 8G Peyré.Best Basis compressed sensing[J].Lecture Notes in Ccmputer Science,2007,4485:80-91.
  • 9V Temlyakov.Nonlinear Methods of Approximation[R].IMI Research Reports,Dept of Mathematics,University of South Carolina.2001.01-09.
  • 10S Mallat,Z Zhang.Matching pursuits with time-frequency dictionaries[J].IEEE Trans Signal Process,1993,41(12):3397-3415.

共引文献767

同被引文献35

引证文献6

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部