期刊文献+

F_(4~m)上厄米特自正交常循环码 被引量:2

Hermitian Self-Orthogonal Constacyclic Codes over F_(4~m)
下载PDF
导出
摘要 有限域上常循环码具有丰富的代数结构,其编译码电路容易实现,因而在信息传输实践中具有重要的应用.该文研究了一类有限域上任意长度的厄米特自正交常循环码的结构,给出了此类有限域上厄米特自正交常循环码的生成多项式与存在条件,确立了此类有限域上厄米特自正交常循环码的计数公式,并且利用此类有限域上偶长度的厄米特自正交常循环码构造了最优的量子码. Constacyclic codes over finite fields are a class of important linear codes. This class of codes has rich algebra structure and its encoding and decoding circuits can be easily performed. Constacyclic codes over finite fields have many applications in information transmission. In this paper, the structure of Hermitian self-orthogonal constacyclic codes over a class of finite fields of any length is studied. By using generator polynomial, the condition for the existence of Hermitian self- orthogonal constacyclic codes over this class of finite fields is explored and the enumeration formula of such codes is determined. Further, Hermitian self-orthogonal constacyclic codes over this class finite fields are applied to construct some optimal quantum codes.
出处 《电子学报》 EI CAS CSCD 北大核心 2017年第6期1469-1474,共6页 Acta Electronica Sinica
基金 国家自然科学基金(No.61370089 No.61572168) 安徽省自然科学基金(No.JZ2015AKZR0229 No.1508085MA13 No.1408085QF116) 2014年安徽省高校优秀青年支持计划 东南大学移动通信国家重点实验室开放研究基金(No.2014D04)
关键词 常循环码 厄米特自正交码 生成多项式 量子码 constacyclic code Hermitian self-orthogonal code generator polynomial quantum code
  • 相关文献

参考文献6

二级参考文献81

  • 1李卓,邢莉娟,王新梅.一类量子循环码的构造方法[J].西安电子科技大学学报,2007,34(2):187-189. 被引量:5
  • 2李平,朱士信.环F2+uF2上长为2^e的循环码[J].电子与信息学报,2007,29(5):1124-1126. 被引量:16
  • 3Ketkar A, Klappeneeker A, Kumor S, et al. Nonbinary Stabilizer Codes over Finite Fields [J]. IEEE Trans on Inform Theory, 2006, 52(12): 4892-4914.
  • 4Shor P W. Scheme for Reducing Decoherence in Quantum Memory [J]. Phys Rev A, 1995, 52(4) : 2493-2496.
  • 5Steane A M. Error Correcting Codes in Quantum Theory [J]. Phys Rev Lett, 1996, 77(5): 793-797.
  • 6Laflamme R, Miquel C, Paz J P, et al. Perfect Quantum Error Correction Code [J]. Phys Rev Lett, 1996, 77(2) : 198- 201.
  • 7Calderbank A R, Shor P W. Good Quantum Error-correcting Codes Exist [J]. Phys Rev A, 1996, 54(2): 1098-1105.
  • 8Steane A M. Multiple Particle Interference and Quantum Error Correction [J]. Proc Roy Soc Lond A, 1996, 452(1954) : 2551-2577.
  • 9Gottesman D. Class of Quantum Error-correcting Codes Saturating the Quantum Hamming Bound [J]. Phys Rev A, 1996, 54(3) : 1862-1868.
  • 10Calderbank A R, Rains E M, Shor P W, et al. Quantum Error Correction and Orthogonal Geometry [J]. Phys Rev Lett, 1997, 78(3): 405-408.

共引文献30

同被引文献3

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部