期刊文献+

自适应阈值分割与局部背景线索结合的显著性检测 被引量:15

Saliency Detection Based on Adaptive Threshold Segmentation and Local Background Clues
下载PDF
导出
摘要 为了提高显著性算法对不同类图像的适用性以及结果的完整性,该文提出一种基于自适应阈值合并的分割过程与新的背景选择方法相结合的显著性检测算法。在分割过程中,生成相邻区块的RGB以及LAB共六通道融合的颜色差值序列,采用区块面积参数的反比例模型生成自适应阈值与颜色差值序列进行对比合并。在背景选择过程中,根据局部区域背景-主体-背景的相对位置关系线索,得到背景区域,再对结果进行边缘优化。该算法与其它算法相比得到的显著图不需要外接其他阈值算法即生成二值图,自适应阈值合并能排除复杂环境中的物体细节,专注于同等级大小物体的显著性对比。 In order to improve the applicability for different types of image and integrity of the results, a saliency detection algorithm is proposed. It combines the adaptive threshold merging with a new background selection strategy. In the segmentation process, the color difference sequence is obtained by the selective fusion of RGB and LAB of adjacent blocks. Adaptive threshold is generated by inverse proportion model of block area parameter. Merging progress is done after the adaptive threshold comparison with the color difference sequence. In the background selection process, background regions are obtained by the local relative position of background-subject-background in the local area. The experimental results are optimized for edge. Compared with other algorithms, the saliency map of two values obtained does not need external threshold algorithm in this paper. Adaptive threshold merging can eliminate the details of objects in complex environments and can focus on the saliency comparison of the same level size objects.
出处 《电子与信息学报》 EI CSCD 北大核心 2017年第7期1592-1598,共7页 Journal of Electronics & Information Technology
基金 天津市科技计划项目(14RCGFGX00846 15ZCZDNC 00130) 河北省自然科学基金面上项目(F2015202239)~~
关键词 显著性检测 自适应阈值 相邻颜色差值 局部背景线索 边缘优化 Saliency detection Adaptive threshold Adjacent color difference Local background clues Edge optimization
  • 相关文献

参考文献3

二级参考文献58

  • 1钟宝江,廖文和.基于精化曲线累加弦长的角点检测技术[J].计算机辅助设计与图形学学报,2004,16(7):939-943. 被引量:22
  • 2张小洪,雷明,杨丹.基于多尺度曲率乘积的鲁棒图像角点检测[J].中国图象图形学报,2007,12(7):1270-1275. 被引量:21
  • 3Witkin A P. Scale-space filtering[A].Karlsruhe,Germany,1983.19-1022.
  • 4Asada H,Brady M. The curvature primal sketch[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1986.2-14.
  • 5Mokhtarian F,Mackworth A K. Scale-based description and recognition of planar curves and two-dimensional shapes[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1986,(01):34-43.
  • 6Mokhtarian F,Bober M. Curvature scale space representation:Theory,applications,and MPEG-- 7 standardization[M].Dordrecht:kluwer Academic Publishers,2003.450.
  • 7Awrangjeb M,Lu G. Robust image corner de- tection based on the chord-to-point distance ac- cumulation technique[J].IEEE Transactions on Multimedia,2008.1059-1072.
  • 8Chang C C. Adaptive multiple sets of CSS fea- tures for hand posture recognition[J].Neurocom- puting,2006.2017-2025.
  • 9Cui M,Wonka P,Razdan A. A new im- age registration scheme based on curvature scale space curve matching[J].The Visual Computer,2007,(08):607-618.
  • 10Mahmoudi S,Daoudi M. A probabilistic ap- proach for 3D shape retrieval by characteristic views[J].Pattern Recognition Letters,2007,(13):1705-1718.doi:10.1016/j.patrec.2007.04.012.

共引文献36

同被引文献60

引证文献15

二级引证文献44

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部