期刊文献+

基于量子粒子群优化的短波相控阵天线的激励优化研究 被引量:4

Analysis of Excitation Optimization of Short Wave Phased Array Based on Quantum-behaved Particle Swarm Optimization
下载PDF
导出
摘要 为加强短波装备远距离通信和电子对抗的干扰能力,须提高近地架设的宽带短波相控阵天线的性能,该文首先利用矩量法建立分析天线阵列的基本框架,然后再结合空域格林函数将天线剖分子模的辐射场分解成自由空间部分和含索末菲积分的部分,前者可以直接得到闭式表达,后者采用二级离散复镜像方法得到近似解,经过处理,阻抗矩阵填充速度极大提高。然后基于阻抗矩阵,结合网络理论并利用量子粒子群优化方法(QPSO)对阵列的激励相位进行优化,以控制波束指向和提高增益,能够在电离层参数随时空变化情况下,灵活地完成点对点天波传播,有较高的实际应用价值。 In order to enhance long-distance communication performance and jamming ability in electronic warfare for shortwave equipment, performance improvement of near-ground wideband short wave phased array is required. Firstly, method of moments is adopted to construct the analysis framework, then the radiation field of antenna elements is decomposed into free-space part and Sommerfeld-integral part with the help of formulation of spatial Green's function, the former part can be expressed in closed form and the latter part can be approximated by two-level DCIM. After that, the efficiency of filling impedance matrix is enormously increased. Finally, based on the impedance matrix, combining with network theory, Quantum-behaved Particle Swarm Optimization (QPSO) is employed to search for optimal excitation phases, through which high gain and beam scanning are realized. Furthermore, point-point sky wave propagation is implemented neatly in the condition of temporal and spatial variation of ionosphere parameters, thus the array is of great value in practical applications.
出处 《电子与信息学报》 EI CSCD 北大核心 2017年第7期1769-1773,共5页 Journal of Electronics & Information Technology
基金 安徽省自然科学基金(1408085QF121)~~
关键词 天波传播 矩量法 快速算法 最优激励 量子粒子群优化算法 Sky wave propagation Method of Moments (MoM) Fast algorithm Optimal excitation Quantum- behaved Particle Swarm Optimization (QPSO)
  • 相关文献

参考文献1

二级参考文献9

  • 1哈林登著.王尔杰译.计算电磁场的矩量法.北京:国防工业出版社,1981,第1-3章.
  • 2Chow Y L, Yang J J, Fang D F, and Howard G E. A closed-form spatial Green's function for the thick substrate[J] IEEE Trans. on Microwave Theory Tech, 1991, 39(3): 588- 592.
  • 3Aksun M I. A robust approach for the derivation of closed-form Green's function[J]. IEEE Trans. on Microwave Theory Tech, 1996, 44(5): 651-658.
  • 4Chew W C. Waves and Fields in Inhomogeneous Media[M]. Van Nostrand, New York, 1990, Chapter1-3.
  • 5Shuley N V and Boix R R. On the fast approximation of Green's functions in MPIE formulations for planar layered media[J]. IEEE Trans. on MTT, 2002, 50(9): 2185-2192.
  • 6Liu Y. Application of DCIM to MPIE-MOM analysis of 3-D PEC objects in multilayered media[J]. IEEE Trans. on Antennas and Propagation, 2002, 50(2): 157-161.
  • 7Hsu C I G, Harrington R F, Michalski K A, and Zheng D. Analysis of a multiconductor transmission line of arbitrary cross-section in multilayered uniaxial media[J]. IEEE Trans. on Microwave Theory Tech, 1993, 41(1): 70-78.
  • 8Hua Y and Sarkar T K. Generalized pencil-of-function method for extracting poles of an EM system from its transient response[J]. IEEE Trans. on Antennas and Propagation, 1989, 37(2): 229-234.
  • 9Katehi P B and Alexopoulos N G. Real axis integration of sommerfeld integrals with applications to printed circuit antennas[J]. J. Math. Phys, 1983, 24(3): 527-533.

共引文献3

同被引文献33

引证文献4

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部