期刊文献+

海量RDF数据存储查询研究 被引量:2

Research on storage and query of massive RDF data
下载PDF
导出
摘要 为了解决海量RDF(Resource Description Framework)数据的存储查询效率问题,基于关系数据库、直接索引、图3种不同的存储方案,对开源数据库Virtuoso、TDB、Neo4j的RDF数据存储方法进行了研究。采用Freebase的27亿三元组为实验数据,对比分析了这3种数据库的存储查询效率。综合存储查询效率、SPARQL支持、可扩展性等因素,得出三者中Virtuoso是处理海量RDF数据存储与查询的最佳方案,并在研究过程中提出了RDF在图数据库Neo4j中的存储查询方法。 In order to improve the storage and query efficiency of massive RDF( Resource Description Framework) data,three open source databases including Virtuoso,TDB and Neo4 j were studied based on three different storage categories: the relation database category,the direct index category and the graph category. A contrast experiment was made to compare the storage and query efficiency of these three databases. The experiment took 2. 7 billion triples of Freebase as experimental data. Synthesizing the storage and query efficiency,SPARQL support,scalability and other factors,we came to a conclusion that Virtuoso is the best in these three databases to deal with the storage and query of massive RDF data. And a method of storage and query for RDF data in graph database Neo4 j was put forward.
出处 《北京信息科技大学学报(自然科学版)》 2017年第3期63-69,共7页 Journal of Beijing Information Science and Technology University
基金 863计划课题"面向基础教育的知识能力智能测评与类人答题验证系统"(2015AA015409)
关键词 RDF VIRTUOSO TDB Neo4j 图数据库 RDF Virtuoso TDB Neo4j graph database
  • 相关文献

参考文献2

二级参考文献73

  • 1李曼,杜小勇,王珊.语义Web环境中本体库管理系统体系结构研究[J].计算机研究与发展,2006,43(z3):39-45. 被引量:2
  • 2Suchanek F M, Kasneci G, Weikum G. Yago: a core of semanticknowl- edge. In: Proceedings of the 16th ACM International Conference on World Wide Web. 2007, 697-706.
  • 3Bizer C, Lehmann J, Kobilarov G, Auer S, Becker C, Cyganiak R, Hellmann S. DBpedia -- a crystallization point for the web of data. J. Web Semantics: Science, Services and Agents on the World Wide Web, 2009, 7(3): 154-165.
  • 4Schmachtenberg M, Bizer C, Paulheim H. Adoption of best data prac- tices in different topical domains. In: Proceedings of the 13th Interna- tional Semantic Web Conference. 2014, 245-260.
  • 5Zhang Y, Duc P M, Corcho O, Calbimonte J E SRBench: A streamin- gRDF/SPARQL benchmark. In: Proceedings of the llth International. Semantic Web Conference.2012, 641--657.
  • 6Zaveri A, Rula A, Maurino A, Pietrobon R, Lehmann J, Auer S. Qual- ityassessment for linked data: a survey. Semantic Web, 2015, 7(1): 63-93.
  • 7Tang N. Big RDF data cleaning. In: proceedings of the 31st IEEE In- ternational Conference onData Engineering Workshops. 2015, 77-79.
  • 8Klyne G, Carroll J J, McBride B. RDF 1.1 concepts and abstract syn- tax.W3C Recommendation, 2014.
  • 9Harris S, Seaborne A, Prud'hommeaux E. SPARQL 1.1 query lan- guage. W3C Recommendation, 2013.
  • 10Zou L, tSzsu M T, Chen L, Shen X, Huang R, Zhao D. gStore: agraph- based SPARQL query engine. The VLDB journal, 2014, 23(4): 565- 590.

共引文献67

同被引文献20

引证文献2

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部