期刊文献+

基于失效概率的全局重要性测度分析的交叉熵方法 被引量:4

Cross-Entropy Method for Failure Probability Based Global Importance Measure Analysis
下载PDF
导出
摘要 输入随机变量对失效概率的贡献程度可以用基于失效概率的全局重要性测度来表征。引入交叉熵方法计算全局重要性测度,以解决传统重要抽样法存在重要抽样函数难以确定的困难。交叉熵方法是一种自适应重要抽样方法,通过渐进确定重要抽样函数的方法回避传统重要抽样法中设计点位置和个数求解的困难。通过比较重要抽样法和交叉熵方法的基本思想和算例结果可以发现:重要抽样法只适用于设计点位置和个数容易求得的情况,而对于多设计点和复杂极限状态函数的情况,交叉熵方法具有更高的效率和精度。 The contribution of input random variables to failure probability of an uncertain system can be characterized by failure probability based global importance indices. In this paper, cross entropy method (CEM) is introduced to calculate global importance indices to address the issue of constructing an appropriate importance sampling probability density function (PDF) in the traditional important sampling method. In essential, CEM is an adaptive important sampling method which selects a proper important sampling PDF in a progressive way to avoid the calculation of position and number of design points. Comparing the associate theories and computational results, it can be seen that the traditional importance sampling is applicable to simple cases where design points can be easily found only while CEM possesses high computational efficiency and accuracy for problems with multiple design points and complex limit state function.
作者 任超 李洪双
出处 《西北工业大学学报》 EI CAS CSCD 北大核心 2017年第3期536-544,共9页 Journal of Northwestern Polytechnical University
基金 国家自然科学基金民航联合研究基金(U1533109)资助
关键词 重要度分析 失效概率 交叉熵方法 设计点 计算效率 MATLAB 随机变量 importance measure, failure probability, importance sampling, cross entropy method, computationalefficiency, MATLAB, random variables
  • 相关文献

参考文献4

二级参考文献15

  • 1CUI LiJie,Lü ZhenZhou & ZHAO XinPan School of Aeronautics,Northwestern Polytechnical University,Xi’an 710072,China.Moment-independent importance measure of basic random variable and its probability density evolution solution[J].Science China(Technological Sciences),2010,53(4):1138-1145. 被引量:43
  • 2陈建兵,李杰.结构随机响应概率密度演化分析的数论选点法[J].力学学报,2006,38(1):134-140. 被引量:41
  • 3Wu YT, Sitakanta M. Variable screening and ranking using sampling-based sensitivity measures. Reliability Engineering and System Safety, 2006, 91(6): 634-647.
  • 4Wu YT. Computational methods for efficient structural reliability and reliability sensitivity analysis. AIAA, 1994, 32(8): 1717-1723.
  • 5Borgonovo E. A new uncertainty importance measure. Reliability Engineering and System Safety, 2007, 92(6): 771-784.
  • 6Schueller GI, Pradlwarter HJ. A critical appraisal of reliability estimation procedures for high dimensions. Probabilistic Engineering Mechanics, 2004, 19(4): 463-474.
  • 7Huang BQ, Du XP. Probabilistic uncertainty analysis by mean-value first order saddlepoint approximation. Reliability Engineering and System Safety, 2008, 93(2): 325-336.
  • 8Daniels HE. Saddlepoint approximations in statistics. Annals of Mathematical Statistics, 1954, 25(4): 631-649.
  • 9Huang BQ, Du XP. Uncertainty analysis by dimension reduction integration and saddlepoint approcimation. Journal of Mechanicla Design, 2006, 128(1): 26-33.
  • 10Gai G Q,Int J Nonlinear Mech,1996年,31卷,5期,647页

共引文献73

同被引文献11

引证文献4

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部