期刊文献+

基于最近邻居优化选取方法的协同过滤推荐算法 被引量:1

Collaborative Filtering Recommendation Algorithm Based on Nearest Neighbor Optimal Selection Method
原文传递
导出
摘要 针对传统的协同过滤推荐算法推荐精度低和数据稀疏的问题,提出基于最近邻居优化选取方法的协同过滤推荐算法.首先,提出一种用户可用度计算模型,根据其他用户对目标用户的可用度计算结果,选取最近邻居候选集.然后,提出一种用户信任度计算模型,计算目标用户对最近邻居候选集中用户的信任度,进而选取目标用户的最近邻居.最后,根据最近邻居的评分情况,得到目标用户的推荐.实验结果表明,该算法提高了推荐精度,而且有效地改善了不同稀疏程度数据上的推荐效果. To solve the problems of the low recommendation precision and data sparseness in traditional collaborative filtering, a collaborative filtering recommendation algorithm based on nearest neighbor optimal selection method was proposed. Firstly, the availability computing model was designed to calculate availability between users and on the basis of the availability, the alternative nearest neighbor set of target user was selected. Then the trust degree computing model was designed to calculate trust degree according to the ratings of alternative nearest neighbors, and the nearest neighbor set of target user was chosen based on the trust degree between users. Finally, the target user's recommendation was obtained according to the nearest neighbors' ratings. Experimental results show that the proposed algorithm not only can improve the recommendation precision, but also can efficiently improve the recommendation quality on different sparsity data.
出处 《南开大学学报(自然科学版)》 CAS CSCD 北大核心 2017年第3期27-32,共6页 Acta Scientiarum Naturalium Universitatis Nankaiensis
关键词 推荐算法 协同过滤 最近邻居 可用度 信任度 recommendation algorithm collaborative filtering nearest neighbor availability trust degree
  • 相关文献

参考文献6

二级参考文献83

  • 1李英壮,高拓,李先毅.基于云计算的视频推荐系统的设计[J].通信学报,2013,34(S2):138-140. 被引量:8
  • 2丁欣,马严,吴军.适用于校园网的视频推荐系统的设计与实现[J].通信学报,2013,34(S2):175-179. 被引量:4
  • 3应伟,王正欧,安金龙.一种基于改进的支持向量机的多类文本分类方法[J].计算机工程,2006,32(16):74-76. 被引量:28
  • 4游文,叶水生.电子商务推荐系统中的协同过滤推荐[J].计算机技术与发展,2006,16(9):70-72. 被引量:54
  • 5TerveenL,Hill W,Amento B.A system for sharing recommendations[J].Communications of the ACM,1997,40(3):59-62.
  • 6Paul-Alexandru Chirita,Claudiu S Firan,Wolfgang Nejdl.Personalized Query Expansion for the Web[C]//SIGIR.30th annual international ACM SIGIR conference on research and development in information retrieval,Jul 23-27,2007,Amsterdam.New York:ACM Press,2007:7-14.
  • 7张润楚.多元统计分析[M].北京:科学出版社,2010:182-190.
  • 8Goldberg D, Nichols D, Oki B M, et al. Using collaborative filtering to weave an information tapestry[J]. Communications of the ACM, 1992, 35(12):61--70.
  • 9Schafer J B, Konstan J A, Riedl J. Recommender systems in E-commerce[C]//Proceedings of the 1st ACM Conference on Electronic Commerce, New York.. ACM Press, 1999: 158-166.
  • 10Schafer J B, Konstan J A, Riedl J. E-commerce recommendation applications[J]. Data Mining and Knowledge Diseovery, 2001, 5(1): 115-153.

共引文献203

同被引文献8

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部