摘要
为应对日益增多的国际物流风险,基于超网络理论及方法构建了海关物流监控超网络(CLMSN),创建了两个考虑了超网络节点静态维度和动态维度特性的风险判定指标,提出了一种高风险节点评判算法。通过算例验证了该算法能够识别判定CLMSN中的高风险节点。采用此算法判定高风险节点并优先实施重点监控能够控制风险发生及传播的可能性,从而对目前海关物流监控风险管理进行有效优化。
In order to cope with the increasing international logistics risk,optimizing Customs Logistics Monitoring system risk management is necessary.This article use super-network theory and method to build Customs Logistics Monitoring Super-network(CLMSN)and put forward an evaluation algorithm considering static and dynamic characteristic of nodes.Numerical analyses of examples show that the method is correct and effective in identifying high risk nodes.Using the algorithm in this paper to determine the high risk nodes and giving priority to the implementation of key monitoring can control the occurrence and spread of risk,and will effectively improve the Customs Logistics risk management.
出处
《复杂系统与复杂性科学》
CSCD
北大核心
2017年第2期39-45,共7页
Complex Systems and Complexity Science
基金
上海市教委科研创新项目(14YS160)
上海市哲学社会科学规划课题(2014BGL012)
上海海关学院科研创新团队(2312229)
关键词
超网络
海关物流监控
高风险节点
风险管理
优化
super-network
customs logistics monitoring
high-risk node
risk management
optimization