期刊文献+

互花米草克隆基株网络的随机游走特征 被引量:2

Random Walk on the Clonal Network of Spartina Alterniflora
下载PDF
导出
摘要 基于野外实地调查的数据和复杂网络理论,分别定义4种形式的节点和4种类型的边,然后构建了具有异配性的互花米草基株多重关系网络。为了研究互花米草多重关系网络的拓扑结构和动态特性,建立了具有多个陷阱节点的随机游走模型。数值仿真结果显示:在随机游走过程中,无穗株丛和无穗分株是控制节点平均吸收时间的主要因素。经分析可知,建构的互花米草基株的水平空间扩散网络模式反映了其真实生境异质性模式。此外,该模型对于分析其它种类克隆植物的异质生境格局具有借鉴意义。 Trapping process constituted a primary problem of random walks.Based on the field survey data and the theory of complex network,four types of nodes and four types of edges were defined,and then the multiple relationship networks of Spartina alterniflora genets were constructed,which showed disassortativity.In order to explore the topological and dynamic characteristics of the multiple relationship networks of S.alterniflora genets,the random walk models with multiple traps were established.The simulation result showed that the bunches and the ramets without spikes were the major regulatory nodes of ATT in the random walks.We concluded that the horizontal spatial diffusion network patterns of S.alterniflora genets revealed by the models reflected their habitat heterogeneity patterns.Furthermore,this type of models might generally provide a reference for the analysis on the heterogeneity patterns of the habitats of other clonal plants.
出处 《复杂系统与复杂性科学》 CSCD 北大核心 2017年第2期82-88,共7页 Complex Systems and Complexity Science
基金 国家自然科学基金(31170387 31370435 31570373)
关键词 互花米草 随机游走 陷阱节点 生境异质性 spartina alterniflora random walk trapping node habitat heterogeneity
  • 相关文献

参考文献2

二级参考文献29

  • 1刘建,杜文琴,马丽娜,黄素芳,刘波.大米草防除剂——米草净的试验研究[J].农业环境科学学报,2005,24(2):410-411. 被引量:12
  • 2王智晨,张亦默,潘晓云,马志军,陈家宽,李博.冬季火烧与收割对互花米草地上部分生长与繁殖的影响[J].生物多样性,2006,14(4):275-283. 被引量:27
  • 3高慧,彭筱葳,李博,吴千红,董慧琴.互花米草入侵九段沙河口湿地对当地昆虫多样性的影响[J].生物多样性,2006,14(5):400-409. 被引量:34
  • 4Nowak M A, May R. Evolutionary games and spatial ehaos[J]. Nature, 1992, 359(6398) : 826 - 829.
  • 5Szab6 G, Fath G. Evolutionary games on graphs[J]. Phys Reports, 2007,446(4/5/6) : 97 -216.
  • 6Szab6 G, Toke C. Evolutionary prisioner's dilemma game on a square lattice[J]. Phys Rev E, 1998,58(1): 69- 73.
  • 7Vukov J, Szab6 G, Szolnoki A. Cooperation in the noisy case., prisioner's dilemma game on two types of regular random graphs[J]. Phys Rev E, 2006, 73(6): 067103.
  • 8Watts D J, Strogatz S H. Collective dynamics of 'small-world" networks. [J]. Nature, 1998, 393(6684) : 440 - 442.
  • 9Newman M E J, Watts D J. Renormalization group analysis of the small-world network model[J]. Physics Letter A, 1999, 263(4) : 341 - 346.
  • 10Wu Z X, Xu X J, H uang Z G, et al. Evolutionary prisoner's dilemma game with dynamic preferential selection [J]. Physical Review E, 2006, 74(2) : 021107.

共引文献199

同被引文献7

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部