期刊文献+

基于数据驱动的燃气轮机剩余寿命预测 被引量:3

Data Driven based Prognostic of Remaining Useful Life for Gas Turbine
下载PDF
导出
摘要 提出一种基于数据驱动的燃气轮机剩余寿命预测方法。将随时间呈上升趋势的参数(温度、压力、转速等)经过EMD方法分解,获得反映燃气轮机性能劣化的趋势特征;利用趋势特征和人为设定的若干运行状态训练神经网络,将实时运行数据输入神经网络进行分类以获得当前所处的运行状态;考虑到分类结果的离散性,利用最小二乘直线拟合方法将所有分类结果进行拟合,以获得预测的剩余使用寿命。上述方法通过C-MAPSS软件所提供的燃气轮机运行数据得到验证,取得较好的预测效果。 A data driven based approach of remaining useful life prediction for gas turbine is presented. Signals ascending with time such as temperature, pressure and rotating speed are decomposed by empirical mode decomposition, and the tendency features reflec-ting the deterioration process of gas turbine can be obtained. An artificial neural network is trained using the tendency features and op-erating state by artificial arrangement, then the online data is input into the trained neural network and the classification result can be calculated. Considering the discreteness of classification result, a linear least square method is applied to fit the classification result and the predicted remaining useful life is obtained. The above methodology is demonstrated by the datasets generated from the C-MAPSS software.
出处 《燃气轮机技术》 2017年第2期23-27,共5页 Gas Turbine Technology
基金 中央在京高校重大成果转化项目(ZDZH20141005401)
关键词 数据驱动 燃气轮机 剩余寿命 预测 data driven gas turbine remaining useful life estimation
  • 相关文献

参考文献3

二级参考文献68

共引文献192

同被引文献77

引证文献3

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部