摘要
设M^n是(n+1)维Lorentz空间形式M_1^(n+1)(c)中无脐点类空超曲面.在M_1^(n+1)(c)的共形变换群下,M^n上的3个基本的共形不变量分别是:共形1-形式C,共形2-张量A,共形度量g.用κ表示共形法化数量曲率,?=A-1/ntr(A)g表示无迹共形2-张量,主要证明了一个空隙定理.
Let M^n be a n-dimensional umbilic-free hypersurface in the(n + 1)-dimensional Lorentzian Space form M_1^(n+1)(c).Three basic invariants of M^n under the conformal transformation group of M_1^(n+1)(c)are a 1-form C,called conformal 1-form,a symmetric(0,2)tensor A,called conformal 2-tensor,and a positive definite(0,2)tensor g,called conformal metric.We denote the conformal normalized scalar curvature by κ and the trace-free conformal 2-tensor by ? =A-1/ntr(A)g.In this paper,we prove a gap theorem.
出处
《河南师范大学学报(自然科学版)》
CAS
北大核心
2017年第5期7-13,共7页
Journal of Henan Normal University(Natural Science Edition)
基金
国家自然科学基金(11571037
11471021)
关键词
共形度量
共形第二基本形式
共形2-张量
conformal metric
conformal second fundamental form
conformal 2-tensor