摘要
针对眼底中小血管提取的问题,提出了一种基于支持向量机的眼底血管分割方法。首先,采用高斯匹配滤波器对眼底图像进行滤波,增强图像对比度;然后,为了加快滤波器的运算速度,提出一种改进的滤波方法,只需像素与最佳匹配模板做卷积;最后,为了提高算法的分类性能,采用均值漂移算法先对滤波后的图像预分类。仿真结果表明提出方法能更准确地分割出眼底血管网络,特别是对中小血管的分割更加精确。
An improved retinal vessel segmentation algorithm based on SVM was proposed to solve the problem that it is difficult to extract medium & small blood vessels at eye fundus. Firstly,the Gauss matched filter was used to filter retinal images and enhance the contrast ratio of images ; then,in order to improve the efficiency of the filter, an improved method of Gaussian matched filter was put forward,which only needs the convolution of pixels and the optimum matching template; finally,in order to improve the classification performance of the algorithm,the mean drifting algorithm was used to preclassify the filtered image. The simulation results show that,by adopting the pro-posed method,the retinal vascular network can be segmented more accurately, especially,is is more accurate for the segment of medium & small blood vessels.
出处
《应用科技》
CAS
2017年第3期67-71,共5页
Applied Science and Technology
基金
国家自然科学基金项目(51679058)
关键词
眼底图像
血管分割
高斯匹配滤波
线检测器
最佳匹配模板
支持向量机
均值漂移算法
图像预分类
eye fundus images
blood vessel segmentation
Gaussian matched filter
linear structure detector
opti-mum matched template
SVM
mean drifting algorithm
image preclassification