期刊文献+

基于SVM的眼底血管分割技术

Eye fundus vessel segmentation technology based on SVM
下载PDF
导出
摘要 针对眼底中小血管提取的问题,提出了一种基于支持向量机的眼底血管分割方法。首先,采用高斯匹配滤波器对眼底图像进行滤波,增强图像对比度;然后,为了加快滤波器的运算速度,提出一种改进的滤波方法,只需像素与最佳匹配模板做卷积;最后,为了提高算法的分类性能,采用均值漂移算法先对滤波后的图像预分类。仿真结果表明提出方法能更准确地分割出眼底血管网络,特别是对中小血管的分割更加精确。 An improved retinal vessel segmentation algorithm based on SVM was proposed to solve the problem that it is difficult to extract medium & small blood vessels at eye fundus. Firstly,the Gauss matched filter was used to filter retinal images and enhance the contrast ratio of images ; then,in order to improve the efficiency of the filter, an improved method of Gaussian matched filter was put forward,which only needs the convolution of pixels and the optimum matching template; finally,in order to improve the classification performance of the algorithm,the mean drifting algorithm was used to preclassify the filtered image. The simulation results show that,by adopting the pro-posed method,the retinal vascular network can be segmented more accurately, especially,is is more accurate for the segment of medium & small blood vessels.
出处 《应用科技》 CAS 2017年第3期67-71,共5页 Applied Science and Technology
基金 国家自然科学基金项目(51679058)
关键词 眼底图像 血管分割 高斯匹配滤波 线检测器 最佳匹配模板 支持向量机 均值漂移算法 图像预分类 eye fundus images blood vessel segmentation Gaussian matched filter linear structure detector opti-mum matched template SVM mean drifting algorithm image preclassification
  • 相关文献

参考文献3

二级参考文献90

  • 1李国友,李惠光,吴惕华.改进的PCNN与Otsu的图像增强方法研究[J].系统仿真学报,2005,17(6):1370-1372. 被引量:9
  • 2汤敏,王惠南.彩色视网膜血管图像的自动分割算法[J].仪器仪表学报,2007,28(7):1281-1285. 被引量:6
  • 3International Diabetes Federation. IDF Diabetes Atlas[R]. 6thed, Brussels, Belgium: International Diabetes Federation, 2014.
  • 4Abramoff M D, Garvin M K, Sonka M. Retinal imaging andimage analysis[J]. IEEE Reviews in Biomedical Engineering,2010, 3: 169-208.
  • 5Winder R J, Morrow P J, McRitchie I N, et al. Algorithms fordigital image processing in diabetic retinopathy[J]. ComputerMedical Imaging and Graphics, 2009, 33: 608-622.
  • 6Kirbas C, Quek F A review of vessel extraction techniques andalgorithms[J]. ACM Computing Surveys, 2004, 36(2): 81-121.
  • 7Hoover A, Kouznetsova V, Goldbaum M. Locating blood vesselsin retinal images by piecewise threshold probing of amatched filter response[J]. IEEE Transactions on Medical Imaging,2000, 19(3): 203-210.
  • 8Staal J J, Abramoff M D, Niemeijer M, et al. Ridge based vesselsegmentation in color images of the retina[J]. IEEE Transactionson Medical Imaging, 2004, 23(4): 501-509.
  • 9Niemeijer M, Staal J J, van Ginneken B, et al. Comparativestudy of retinal vessel segmentation methods on a new publiclyavailable database[C] //Proceedings of SPIE. Bellingham: Societyof Photo-Optical Instrumentation Engineers Press, 2004,5370: 648-656.
  • 10Odstrcilik J, Kolar R, Budai A, et al. Retinal vessel segmentationby improved matched filtering: evaluation on a newhigh-resolution fundus image database[J]. IET Image Processing,2013, 7(4): 373-383.

共引文献51

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部