摘要
为了探索心脏自律活动复杂动力学行为的形成机制,本文研究外力刺激与参数扰动下心脏搏动模型的Hopf分岔问题.首先,给出系统存在Hopf分岔的一组充分条件;其次基于复规范型理论,细致刻画了Hopf分岔方向、分岔周期解及其稳定性态;最后借助数值模拟验证了理论分析结果.
In order to understand the complicated dynamics of cardiac autonomic activity , the Hopf bifurcation to models of reactions of human heart under the action of external force and parametric noise is investigated in detail and deeply . First , the conditions of the existence of Hopf bifurcation to system are obtained . Second , the direction of Hopf bifurcation , the stability of bifurcating period solutions and the expression of the bifurcating periodic solution are rigorous derived and studied by means of complex normal form theory . Finally , numerical simulations are performed to justify theoretical analysis .
出处
《西北师范大学学报(自然科学版)》
CAS
北大核心
2017年第4期12-16,22,共6页
Journal of Northwest Normal University(Natural Science)
基金
国家自然科学基金资助项目(11561069
11361068)
广西自治区自然科学基金资助项目(2016GXNSFBA380170
2015GXNSFAA139002)
广西自治区高校复杂系统优化与大数据处理重点实验室开放基金资助项目(2015CSOBDP0202)
关键词
心脏搏动模型
稳定性
HOPF分岔
周期解
复规范型理论
models of reactions of human heart
stability
Hopf bifurcation
periodic solution
complex normal form theory