摘要
美国是花生收获机械化最早也是技术最先进国家,花生生产与出口一直保持世界强国地位。为探明美国花生收获机械化高水平发展主要动因,发现可供借鉴的经验和教训,运用文献研究法、社会调查法、经验总结法和一般科学思维方法等,系统地回顾了美国20世纪40年代以来花生收获方式和机械化收获技术衍变历程,深入分析了两段收获方式的选择和农机农艺紧密融合过程及其在花生收获机械化发展中的关键作用。结合中国花生生产与机械化现状,提出了因地制宜确立各主产区适宜的花生收获方式和技术路线,建立区域性花生种植技术体系,处理好花生花生机械技术引进与研发的关系,加强花生收获机械关键技术、产地干燥技术和花生秸秆收获技术研发等建议。
Peanut is a very important crop forfood and edible oil in the world. China is the largest peanut producer in total annual production accounted for about 40.26% and the second-largest in peanut planting area accounted for about 16.68% in the world. China, India and Nigeria, United States, Argentina and Brazil all are major important peanut exporters in the world. In the United States, the peanut area planted only accounted for about 2.46%, but total annual peanut production accounted for about 6.11% and export peanut accounted for 16.03% in 2016, which make the United States become a leading country of peanut production and exportation nation in the word. Based on comprehensively analysis, the main reasons why a country becomes strongest peanut production nation is that high level harvest mechanization plays an important role for peanut production. Harvesting is a key part in peanut production, it accounts for more than 50 percent labor employment of the whole process. However, in the USA, the application of peanut harvest mechanization was implemented in 1950's that dramatically changed peanut harvesting practices. The peanut harvest mechanization mode has two stages in USA. Two pieces of equipment developed in the late 1940's contributed to the major changes in harvesting practices in the USA, those include a peanut shaker-windrower and peanut combine. A peanut shaker-windrower was further advanced to Digger-Shaker-Inverter in the early 1970's, which can turn the plants upside down and place two rows together in a windrow to cure. The second piece of equipment is a peanut combine that picks up the peanuts plants from the windrow after they are dried to a safe moisture level, picks off the pods, and deposits the cleaned pods into bulk tanks. After combining, the peanuts are placed in a curing facility where low humidity air is forced through the peanuts to evaporate the excess moisture. With the advances of peanut harvest mechanization technology, the United States has been leading its peanut production with high yield, high quality, high efficiency and more international market competitive advantages. Nevertheless, the initial harvest machinery in the United States ran into problem of dense, heavy peanut foliage that reduces separation efficiency for combine. With blades added into converter for coultering or vine clipping and the varieties with reducing peanut foliage through breeding effort, the current harvest machinery is well adopted by peanut growers in the USA. However, compared to the USA, the adaptation rate of peanut harvest machinery in China is extremely low and the advance of peanut harvest machinery is far behind what we expected. In this paper, by systematic analysis on large number of literatures and documents, we reviewed the developing history of peanut harvest machinery in the USA and summarized the strategies that integrated machinery advantage into production practices through agronomic cultivation and breeding. The successful development experience of peanut harvest machinery in the USA will serve as a guideline for developing adoptable China's peanut harvest machines that are suitable for different cultivation practices, different peanut plants of botanical types, and different growing conditions such as soil types, growing seasons, and scales of peanut field.
出处
《农业工程学报》
EI
CAS
CSCD
北大核心
2017年第12期1-9,共9页
Transactions of the Chinese Society of Agricultural Engineering
基金
国家自然科学基金项目(51575367)
国家重点研发计划项目(2016YFD0702100)
高等学校博士学科点专项科研基金项目(20122103110009)
关键词
农业机械
机械化
收获机
花生
捡拾收获机
美国
衍变历程
启示
agricultural mechinery
mechanization
harvester
peanut
combine
the United States
evolution process
enlightenment