期刊文献+

分割映射的单幅彩色图像去雾方法 被引量:3

Single color image dehazing method based on image segmentation
原文传递
导出
摘要 针对传统暗通道先验去雾方法在进行大气散射函数估计时容易出现块状模糊效应的问题,提出了一种基于分割映射的单幅彩色图像去雾方法。首先对前端采集图像进行近景与远景区域分割,并基于分割区域进行亮度信息的分段映射,通过分段计算获取大气散射函数的预测估计值;接着,采用传统的导向滤波方法对大气散射函数的估计值进行优化分析,进一步增强图像的边缘信息,改善在大面积天空颜色情况下图像边缘的块状模糊效应,提升含雾图像在突变区域的去雾效果。针对实际采集的含雾图像进行去雾效果分析和对比,分别基于图像的对比度改善量e、色彩自然度(CNI)、颜色丰富程度(CCI)以及计算耗时等4方面进行定量对比。分析结果表明,本文方法很好地改善了图像的去雾效果,并进一步提升了运行的实时性。 In order to reduce the block fuzzy effect in estimating the atmospheric scattering function based on the traditional color image dehazing method, this paper proposes a single color image dehazing method based on segmentation mapping. First of all, the front end image blurring vision and regional segmenta- tion are adopted, and the atmospheric scattering function prediction value is obtained based on the seg- mentation mapping through the image brightness information. Second, the orientation of the traditional filtering method is used to estimate the atmospheric scattering function value and to optimize the analy- sis,which can further enhance the edge information of the image,improve the color of the sky in a large area under the massive image edge blur effect,and enhance the image in the region containing the fog mutation to fog effect. Finally, the algorithm performance is analyzed through experiment according to the actual acquisition of the fog image containing the defogging effect analysis and comparison, respec- tively. The quantitative comparison is conducted based on the image improving quantity, the degree of naturalness index,the color colorfulness index and computing time. The results show that this method can improve the effect of fog removing and the real-time performance.
出处 《光电子.激光》 EI CAS CSCD 北大核心 2017年第7期780-787,共8页 Journal of Optoelectronics·Laser
基金 国家自然科学基金(51405418) 江苏省科技计划(BC20140071) 徐州市科技计划(KC14GM047)资助项目
关键词 彩色图像 图像去雾 分割隐射 图像增强 color image image dehazing segmentation map image enhancement
  • 相关文献

参考文献13

二级参考文献257

共引文献500

同被引文献25

引证文献3

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部