期刊文献+

关于k-Hessian方程C2+α局部解的存在性

C^(2+α) Local Solvability of the k-Hessian Equations
下载PDF
导出
摘要 该文克服椭圆型k-Hessian算子的线性化算子不满足极大值原理的困难,利用NashMoser迭代,证明当非齐次项f∈C~α变号或非负时,k-Hessian方程C^(2+α)局部解的存在性,当然当f为C~∞时,存在C~∞局部解.其技巧是首先证明线性化方程解的唯一性,以此为基础得到线性化方程解的存在性,进而得到线性化方程解的高阶正则性和先验估计. Overcoming the difficulty arising from the fact that the linearized operators of the elliptic k-Hessian ones do not satisfy the Maximum principle and employing Nash-Moser iteration, we prove the existence of C2+α local solutions of k-Hessian equation when the non- homogeneous term f∈ Cα changes sign or is nonnegative. Of course there exists C∞ local solution if f∈ C∞. The technique is that, for the solution to the linearized equation, we prefer at first to prove its uniqueness from which the existence of solution, together with the higher regularity and a priori estimates of solutions, follows.
出处 《数学物理学报(A辑)》 CSCD 北大核心 2017年第3期499-509,共11页 Acta Mathematica Scientia
基金 湖北省教育厅科研项目(Q20151401) 国家人社部国家留学人员科技活动择优资助项目(鄂人函[2013]277号)~~
关键词 k-Hessian方程 局部解 Nash-Moser迭代. k-Hessian equations Local solution Nash-Moser iteration.
  • 相关文献

参考文献1

二级参考文献28

  • 1Alinhac S, G6rard P. Pseudo-differential Operators and the Nash-Moser Theorem. Providence: Amer Math Soc, 2007.
  • 2Caffarelli L. Interior W2,p Estimates for solutions of the Monge-Amp6re equation. Ann Math, 1990, 131:135 150.
  • 3Caffarelli L, Nirenberg L, Spruck J. Dirichlet problem for nonlinear second order elliptic equations III: F~nctions of the eigenvalues of the Hessian. Acta Math, 1985, 155:261- 301.
  • 4Chen T, Han Q. Smooth local solutions to Weingarten equations and crk equations. Discrete Contin Dyn Syst, 2015, 36:653-660.
  • 5G&rding L. An inequality for hyperbolic polynomials. J Math Mech, 1959, 8:957 -965.
  • 6Gilbarg D, Trudinger N S. Elliptic Partial Differential Equations of Second Order. Berlin: Springer, 1983.
  • 7Guan B, Spruck J. Locally convex hypersurfaces of constant curvature with boundary. Comm Pure Appl Math, 2004, 57:1311-1331.
  • 8Guan P, Ma X-N. The Christoffel-Minkowski problem I: Convexity of solutions of a Hessian equation. Invent Math, 2003, 151:553-577.
  • 9Guan P, Trudinger N S, Wang X-J. On the Dirichlet problem for degenerate Monge-Amp~re equations. Acta Math, 1999, 182:87-104.
  • 10Hart Q. Local solutions to a class of Monge-Amp~re equations of mixed type. Duke Math J, 2007, 136:401-618.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部