期刊文献+

共形空间中的Blaschke全脐子流形

Blaschke umbilical submanifolds in the conformal space
下载PDF
导出
摘要 在共形群下的完全不变量体系下讨论4种共形不变量之间的关系,并在共形等价意义下分类一些特殊子流形. Since professor changping wang has established the conformal differential geometry theory of submanifolds based on the nature of the conformal differential geometry and submanifolds are obtained under the conformal group fully invariant system. Conformal differential geometry research made greater progress. In this case,we discussed the relationship between the four kinds of conformal invariant,we classified some kinds of special submanifolds under the conformal equivalence.
作者 章左 聂昌雄 ZHANG Zuo NIE Changxiong(Faculty of Mathematics and Statistics, Hubei University, Wuhan 430062, Chin)
出处 《湖北大学学报(自然科学版)》 CAS 2017年第4期417-422,436,共7页 Journal of Hubei University:Natural Science
基金 国家自然科学基金(11571037)资助
关键词 共形空间 共形不变量 常数量曲率 Blaschke全脐子流形 Blaschke拟全脐子流形 conformal space conformal invariant constant scalar curvature Blaschke umbilical submanifolds Blaschke quasi-umbilical submanifolds
  • 相关文献

参考文献7

二级参考文献16

  • 1NIE ChangXiong 1,2,LI TongZhu 3,HE YiJun 4 & WU ChuanXi 5 1 Faculty of Mathematics and Computer Sciences,Hubei University,Wuhan 430062,China,2 School of Mathematical Sciences,Peking University,Beijing 100871,China,3 Faculty of Sciences,Beijing Institute of Technology,Beijing 100081,China,4 School of Mathematical Sciences,Shanxi University,Taiyuan 030006,China,5 Institute of Mathematics,Hubei University,Wuhan 430062,China.Conformal isoparametric hypersurfaces with two distinct conformal principal curvatures in conformal space[J].Science China Mathematics,2010,53(4):953-965. 被引量:10
  • 2Changxiong NIE Xiang MA Changping WANG.Conformal CMC-Surfaces in Lorentzian Space Forms[J].Chinese Annals of Mathematics,Series B,2007,28(3):299-310. 被引量:4
  • 3Chen Jianhua.[D].北京大学,2000.
  • 4Wang Changping. Moehius geometry of suhmanifolds in ,S. Manuscripta Math. 1998, 96:517-534.
  • 5Chen Bangyen. Total mean curvature and submanifolds of finite type. World Scientific Publishing.
  • 6Wang C. P., Moebius geometry of submanifolds in S^n, Manuscripta Math., 1998, 96: 517-534.
  • 7Liu H. L., Wang C. P.,Zhao G. S., Moebius isotropic submanifolds in S^n, Tohoku Math.J.,2001,to appear.
  • 8Chen B. Y., Total mean curvature and submanifolds of finite type, World Scientific Publish'ing, Go Pte Ltd.,1984.
  • 9Bryant R. L., Minimal surfaces of constant curvatures in S^n, Trans. Amer. Math. Soc., 1985, 290(1):259-271.
  • 10Li A. M., Li J. M., An intrinsic rigidity theorem for minimal submanifolds in a sphere, Arch. Math., 1992,58: 582-594.

共引文献67

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部