期刊文献+

膜反应器中生物质甘油制氢反应的热力学研究

The Thermodynamic Study on the Steam Reforming of Bio-Glycerol for Hydrogen Production with Membrane Reactor
下载PDF
导出
摘要 采用吉布斯自由能最小化方法对膜反应器中生物质甘油水汽重整制氢反应进行热力学研究,考察了温度、压力、水与甘油进料比(S/G)等条件对反应性能的影响,并分析副产物CO和CH_4的生成、积炭的生成、移去CO_2、O_2的添加等对氢气产量和反应体系平衡组成的影响.结果表明:T=900 K,p=100 k Pa,S/G=12时,在膜反应器中及时移除CO_2可提高氢气产量和选择性,氢气产量高达6.86 mol H_2/摩尔甘油,选择性98.00%;在反应体系中添加少量的O_2(摩尔分数<1%)有利于抑制CO和CH_4的生成,而氢气产量几乎不受影响. A thermodynamic analysis on hydrogen production by steam reforming of bio-glycerol in membrane reactor was carried out by employing the Gibbs free energy minimization principle. The influence of operating conditions such as temperature, pressure, ratio of steam and glycerol ( S/G), the production of CO, CH+ and coke, the removal of CO, and the addition of O2 on the reaction performance ,hydrogen production and selectivity were investigated in details. When T=900 K,p = 100 kPa,S/G = 12,hydrogen production of 6.86 mol H2/mol glycerol and hydrogen selectivity of 98.00% were achieved in a membrane reactor via CO2 removal,which could improve the hydrogen pro- duction and selectivity. Meanwhile, the addition of little amount of O2 ( 〈 1% ) was favorable for this catalysis process, showing no effects on hydrogen production, but was inhibitive of the reformation of CO and CH4.
出处 《江西师范大学学报(自然科学版)》 CAS 北大核心 2017年第3期229-233,共5页 Journal of Jiangxi Normal University(Natural Science Edition)
基金 国家自然科学基金(21566012) 江西省科技厅(20151BAB203025 2015BDH80012)资助项目
关键词 生物质甘油 氢气 热力学 反应平衡 bio-glycerol hydrogen thermodynamics reaction equilibrium
  • 相关文献

参考文献6

二级参考文献140

  • 1Tapanes N C O, Aranda D A G, Mesquita Carneiro J W D, et al. Transesterifieation of Jatropha curcas oil glycerides: Theoretical and experimental studies of biodiesel reaction[J]. Fuel, 2008, 87 ( 10-11 ): 2286-2295.
  • 2Dou B L, Dupont V, Williams PT, et al. Thermogravimefic kinetics of crude glycerol [J]. Bioresour TechnoL, 2009, 100: 2613-2620.
  • 3Wang X, Li S, Wang H, Liu B, Ma X. Thermodynamic analysis of glycerin steam reforming [J]. Energy Fuels, 2008, 22 (6) : 4285-4291.
  • 4Adhikafi S, Fernando S, Gwaltney S R, et al. A thermodynamic analysis of hydrogen production by steam reforming of glycerol[J]. International Journal of Hydrogen Energy, 2007,32( 14): 2875-2880,.
  • 5Chen H S, Zhang T F, Dou B L, et al. Thermodynamic analyses of adsorption-enhanced steam reforming of glycerol for hydrogen production[J]. International Journal of Hydrogen Energy, 2010, 34 (17): 7208-7222.
  • 6Li Y, Wang W, Chen B, et al. Thermodynamic analysis of hydrogen production v/a glycerol steam reforming with CO2 adsorption[J], International Journal of Hydrogen Energy, 2010, 35( 15 ): 7768-7777.
  • 7Chen H S, Ding Y L, Cong N T, Dou B L, et al. A comparative study hydrogen production from steam-glycerol reforming : thermodynamics and experimental[J]. Renewable Energy, 2011, 36 (2): 779-788.
  • 8Dou B L, Dupont V, Williams P T. Computational Fluid dynamics simulation of gas-solid flow during steam reforming of glycerol in a fluidized bed reactor[J]. Energy & Fuels, 2008, 22 (6): 4102-4108.
  • 9Dou B L, Dupont V, Williams P T. Modeling of gas-solid flow and hydrogen production from steam reforming of glycerol in a fluidized bed reactor[J]. Prep. Pap. : Am. Chem. Soc., Div. Fuel Chem., 2008, 53: 628-629.
  • 10Dou B L, Song Y S. A CFD approach on simulation of hydrogen production from steam reforming of glycerol in a fluidized bed reactor[J]. International Journal of Hydrogen Energy, 2010, 35 ( 19): 10271 - 10284.

共引文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部