期刊文献+

半线性Emden-Fowler微分方程的振动性

Oscillation of the half-linear Emden-Fowler differential equation
下载PDF
导出
摘要 主要研究了一类半线性Emden-Fowler微分方程的振动性.利用广义Riccati变换和积分平均技巧建立新的振动准则,推广和改进了一些文献中的结果.此外,给出每个定理所相对应的例子,用来说明其相对于已有文献中的定理具有一定的优越性. In this paper, we study the oscillation of a half-linear Emden-Fowler differential equation With the help of the generalized Riccati transformation and integral averaging technique, we establish some new oscillation criteria for the above equation. These results extend and improve some existing results in the cited literature.Also, our results are illustrated with some examples. It is shown that the theorem has some advantages over the existing literature.
作者 李文娟 汤获 李书海 俞元洪 Li Wenjuan Tang Huo Li Shuhai Yu Yuanhong(School of Mathematics and Statistics, Chifeng University, Chifeng 024000 2 China Academy of Mathematics System Sciences, Chinese Academy of Sciences, Beijing 100190, China)
出处 《纯粹数学与应用数学》 2017年第3期274-285,共12页 Pure and Applied Mathematics
基金 国家自然科学基金(11561001) 内蒙古自然科学基金(2014MS0101)
关键词 EMDEN-FOWLER方程 半线性微分方程 振动性 Emden-Fowler equation half-linear differential equations oscillation
  • 相关文献

参考文献1

二级参考文献21

  • 1Agarwal R P, Grace S R, O'Regan D. Oscillation Theory for Difference and Functional Differential Equations. Dordrecht: Kluwer, 2000.
  • 2Agarwal R P, Bohner M, Li W T. Non-oscillation and Oscillation Theory for Functional Differ- ential Equations. New York: Marcel Dekker, 2004.
  • 3Bainov D D, Mishev D P. Oscillation Theory for Neutral Differential Equations with Delay. New York: Adam Hilger, 1991.
  • 4Erbe L H, Kong Q, Zhang B G. Oscillation Theory for Functional Differential Equations. New York: Marcel Dekker, 1995.
  • 5Gyori I, Ladas G. Oscillation Theory of Delay Differential Equations with Applications. Oxford: Clarendon Press, 1991.
  • 6Ladde G S, Lakshmikantham V, Zhang B G. Oscillation Theory of Differential Equations with Deviating Arguments. New York: Marcel Dekker, 1987.
  • 7Aktas M F, Tiryaki A, Zafer A. Oscillation criteria for third-order nonlinear functional differential equations. Appl. Math. Left., 2010, 23(7): 756-762.
  • 8Aktas M F, Tiryaki A, Zafer A. Integral criteria for oscillation of third order nonlinear differential equations. Nonl. Anal., 2009, 71(12): e1496-e1502.
  • 9Dzurina J. Asymptotic properties of the third order delay differential equations. Nonl. Anal., 1996, 26(1): 33-43.
  • 10Grace S R, Agarwal R P, Pavani R, Thandapani E. On the oscillation of certain third order nonlinear functional differential equations. Appl. Math. Comput., 2008, 202(1): 102-112.

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部