摘要
研究peO代数类中的子类pe_(2,0)K_(1,1),即满足恒等式f^3=f和k^2=id_L的peO-代数.利用同余和代数的次直不可约,有如下的主要结果:如果L∈pe_(2,0)K_(1,1),则L是真次直不可约当且仅当Con L■{ω}[G,Φ]{ι}.这里ω和l分别表示相等关系和泛关系,Φ表示由f(x)=f(y)确定的一个同余,G表示Glivenko同余.
In this paper, we particularly study of the peO algebras that belong to the subclass pe_(2,0)K_(1,1)characterised by the identities f^3 = f and k^2 = id_L.By using properties of congruences on such an algebra and the subdirectly irreducibility, the main result obtained in this paper is if L∈ pe_(2,0)K_(1,1),then L is properly subdirectly irreducible if and only if Con L {ω}[G,Φ]{l},where ω and ι stand for the equality relation and the universal relation respectively, Φ denotes the relation determined by f(x) = f(y) and G denotes the Glivenko relation.
作者
张雄盛
方捷
Zhang Xiongsheng Fang Jie(School of Mathematics and System Science, Guangdong Polytechnic Normal University guangzhou 510665, China)
出处
《纯粹数学与应用数学》
2017年第3期314-325,共12页
Pure and Applied Mathematics