期刊文献+

城市峡谷环境下GNSS卫星可见性快速预测方法 被引量:3

Fast Prediction Method for GNSS Satellite Visibility Determination in Urban Canyons
下载PDF
导出
摘要 城市峡谷环境下全球导航卫星系统(GNSS)性能显著下降,通过建立三维城市模型来预测卫星的可见性是该环境下进行GNSS性能分析最为常见的方法之一.为解决三维城市模型数据量大,使得卫星可见性预测计算消耗大量时间的问题,提出了一种快速预测城市中建筑是否遮挡卫星信号的方法.该方法通过分析三角面元的法向量方向、三角面元与用户的相对位置关系以及历史遮挡关系,减少了计算量并缩短了计算时间.仿真结果表明,该方法的相交判断计算次数为传统方法的7.21%,消耗的总计算时间为传统方法的22.38%,平均相对误差为1.89%.该方法具备计算效率高、准确性高的优点. Urban canyons always negatively affect the performance of global navigation satellite system (GNSS). Using 3D city models to predict GNSS satellite visibility is one of the most common methods concerning urban canyons. However, due to the extremely huge data of 3D city models, calculations involved in the prediction of GNSS visibility can be very time-consuming. To solve this problem, a method was proposed that was capable of quickly predicting the existence of urban buildings blocking GNSS satellite signals. This method reduced the burden of calculation and shortened the time for calculating by analyzing the direction of normal vector of the triangular patch, the relative positions of the triangular patch and the user, and the occlusion relation between two adjacent moments. A simulation of this method was conducted. The results show that the intersection calculation counts is only 7.21% of the traditional method, and the computing time 22.38%, while the average relative error is just 1.89%. In conclusion, this new method has a higher computing efficiency and higher accuracy.
作者 蔡熙 刘松林 许承东 CAI Xi LIU Song-ling XU Cheng-dong(School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, China School of Navigation and Aerospace Engineering, The PLA Information Engineering University, Zhengzhou, He'nan 450001, Chin)
出处 《北京理工大学学报》 EI CAS CSCD 北大核心 2017年第6期595-601,共7页 Transactions of Beijing Institute of Technology
基金 国家自然科学基金资助项目(61502257 41304031)
关键词 城市峡谷 全球卫星导航系统(GNsS) 可见性 三维城市模型 urban canyons global navigation satellite system (GNSS) visibility 3D city model
  • 相关文献

参考文献1

二级参考文献13

  • 1Scott G, Demoz G. GNSS applications and methods [M]. London: Artech House, 2009.
  • 2Charles D H, Christopher R J. The visualization handbook[M]. Waltham: Academic Press, 2004.
  • 3Elliott D K, Christopher J H. Understanding GPS principles and applications [M]. 2nd ed. London: Artech House, 2010.
  • 4Bernhard H, Herbert L, Elmar W. GNSS-global navigation satellite systems: GPS, GLONASS, Galileo and more[M]. Austria; Springer, 2008.
  • 5Jain A K. Data clustering: 50 years beyond K-Means [J]. Pattern Recognition Letters, 2010,31(8):651- 666.
  • 6Aloise D, Deshpande A, Hansen P. NP-hardness of euclidean sum-of-squares clustering[ J ]. Machine Learning, 2009,75(2) : 245 - 248.
  • 7Steinley D. K-means clustering: a half-century synthesis [J]. British Journal of Mathematical Statistical Psychology, 2006,59 : 1 - 34.
  • 8Li Youguo, Wu Haiyan. A clustering method based on K-means algorithm [C]///Proceedings of International Conference on Solid State Devices and Materials Science (SSDMS). Macao, China: [s. n.], 2012:1104 -1109.
  • 9Li Chunsheng. Cluster center initialization method for K-means algorithm over data sets with two clusters[C] //Proceedings of International Conference on Advances in Engineering (ICAE). Nanjing, China:[s. n.], 2011:324 -328.
  • 10周庆勇,杜兰,蓝朝桢,乔书波.基于高/低轨监视平台的GEO卫星定轨精度比较[J].北京理工大学学报,2010,30(12):1422-1426. 被引量:3

同被引文献16

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部