期刊文献+

移动云数据库的协作式语义缓存设计

Cooperative Semantic Cache Design for Mobile-Cloud Database Systems
下载PDF
导出
摘要 移动设备的数据访问量在不断增加,而且数据也越来越复杂,但是由于移动设备本身的约束,增加了用户的访问时间。为了解决这个问题,一方面引入了各个用户之间的协作式缓存,另一方面使用云资源。在这里,提供一个移动云数据库架构模型和协作式语义缓存算法,使用户可以根据自己对访问时间的需求,来决定采取什么样的方式来访问数据。 Growing demand for mobile access to data is only outpaced by the growth of large and complex data, accentuating the constrained nature of mobile devices. On the one hand, we introduce the cooperative semantic cache among different users, on the other hand, we use cloud resources to solve this problem. We present a mobile cloud database architecture model and a co- operative semantic cache algorithm by which the users can decide the manner to use to access data according to their demand of accessing time.
作者 杨静丽
出处 《微型电脑应用》 2017年第7期7-10,共4页 Microcomputer Applications
基金 国家自然科学基金(61671253) 南京工业职业技术学院2015年院级科技创新团队项目(TK15-04-01)
关键词 协作式语义缓存 移动 数据库 能量消耗 Cooperative semantic cache Mobile Cloud Energy consumption
  • 相关文献

参考文献9

二级参考文献129

  • 1蔡建宇,吴泉源,贾焰,邹鹏.语义缓存的聚集查询匹配研究[J].计算机研究与发展,2006,43(12):2124-2130. 被引量:4
  • 2Chen K, Zheng WM. Cloud computing: System instances and current research. Journal of Software, 2009,20(5):1337-1348 (in Chinese with English abstract), http://www.jos.org.cn/1000-9825/3493.htm [doi: 10.3724/SP.J.1001.2009.03493].
  • 3Dash D, Kantere V, Ailamaki A. An economic model for self-tuned cloud caching. In: Ioannidis YE, Lee DL, Ng RT, eds. Proc. of the 25th Int'l Conf. on Data Engineering (ICDE 2009). New York: IEEE Computer Society Press, 2009. 1687-1693. [dol: 10.1109/ ICDE.2009.143 ].
  • 4Feng DG, Zhang M, Zhang Y, Xu Z. Study on cloud computing security. Journal of Software, 2011,22(1):71-83 (in Chinese with English abstract), http://www.jos.org.cn/1000-9825/3958.htm [doi: 10.3724/SP.J.1001.2011.03958].
  • 5Xu M, Gao D, Deng C, Luo ZG, Sun SL. Cloud computing boosts business intelligence of telecommunication industry. In: Jaatun MG, Zhao GS, Rong CM, eds. Proc. of the 1st Int'l Conf. on Cloud Computing (CloudCom 2009). Berlin: Springer-Verlag, 2009. 224-231. [doi: 10.1007/978-3-642-10665-1_20].
  • 6Qi J, Qian L, Luo ZG. Distributed structured database system HugeTable. In: Jaatun MG, Zhao GS, Rong CM, eds. Proc. of the 1st Int'l Conf. on Cloud Computing (CloudCom 2009). Berlin: Springer-Verlag, 2009. 338-346. [doi: 10.1007/978-3-642-10665- 1_31].
  • 7Abouzeid A, Bajda-Pawlikowski K, Abadi DJ, Silberschatz A, Rasin A. HadoopDB: An architectural hybrid of MapReduce and DBMS technologies for analytical workloads. PVLDB, 2009,2(1):922-933.
  • 8Ahrens M, Alonso G. Relational databases, virtualization, and the cloud. In: Abiteboul S, B6hrn K, Koch C, Tan KL, eds. Proc. of the 27th Int'l Conf. on Data Engineering (ICDE 2011). New York: IEEE Computer Society Press, 2011. 1254. [doi: 10.1109/ICDE. 2011.5767966].
  • 9Agrawal D, Abbadi AE, Das S, Elmore AJ. Database scalability, elasticity, and autonomy in the cloud--(extended abstract). In: Yu JX, Kim MH, Unland R, eds. Proc, of the 16th Int'l Conf. on Database Systems for Advanced Applications (DASFAA 2011). Berlin: Springer-Verlag, 2011.2-15. Idol: 10.1007/978-3-642-20149-3_2].
  • 10Soares L, Pereira J. Improving the scalability of cloud-based resilient database servers. In: Felber P, Rouvoy R, eds. Proc. of the 1 lth IFIP WG 6.1 Int'l Conf. on Distributed Applications and Interoperable Systems (DAIS 2011). Berlin: Springer-Verlag, 2011. 136-149. [doi: 10.1007/978-3-642-21387-8_11].

共引文献136

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部