摘要
从企业隐性社会责任提取对离职倾向影响因素的权重和顺序是人力资源管理大数据研究的一项重要工作。在云模型的基础上给出一种改进的云关联规则提取方法,并对推导过程进行了论证。给出实现该关联规则提取的具体算法(CARRSL),使非空间属性可以在多个层次上得到很好的概括,从而发现强壮的关联规则。应用于实际离职人员数据库的数据挖掘后表明,可以有效提取可视化和语义关联规则,能有效判别离职倾向影响因素的权重,对企业人力资源管理具有较强的实际指导意义。
It is an important wok to extract the weight and sequence of demission incline actors from enterprise recessive social liability for human resource manage. Firstly, the paper provides an improved cloud correlation extracting method based on cloud model. Secondly, the real algorithm (CAR-RSL) is provided to realize the correlation rules, which effectively generalize the non-spatial attribute in many layers, and detect stronger correlation rules. The algorithm demonstrates the validity of ex tracting visualization and semantic correlation rules, and differentiates the weight of demission incline actor by applying real da- ta mining of demission database. There are reasonably direction meanings for enterprise human resources management.
出处
《微型电脑应用》
2017年第7期48-51,共4页
Microcomputer Applications
关键词
企业隐性社会责任
云关联规则
离职倾向
大数据
Enterprise recessive social liability
Cloud correlation rules
Demission incline
Big data