期刊文献+

鲁棒性监督等距特征映射方法 被引量:5

A robustness supervised isometric feature mapping method
原文传递
导出
摘要 提出一种鲁棒的监督Isomap算法(RS-Isomap算法).该方法首先在标准PCA基础上,为样本邻域点引入权值因子,产生新的优化问题,使用加权迭代最小二乘法求解.然后利用加权主成分分析,遍历每一个样本点,计算归一化权值之和,得到样本的可信度.接着融合样本的可信度、类别和邻域信息,重新定义样本点之间的测地距离,计算最短距离矩阵,采用多维标度分析和广义回归神经网络分别构建训练样本和测试点的嵌入坐标.实验表明:新方法比传统的Isomap方法有较强的抗噪声能力,能有效地提高高光谱图像的分类精度,在运行时间上具有可行性.鲁棒性的监督Isomap算法是一种有效的高光谱遥感图像特征提取方法. A robustness supervised Isomap(RS-Isomap) algorithm was proposed. On the basis of standard PCA, the RS-Isomap algorithm first introduced weight factors into Sample neigh-bourhood points to generate new optimization problems, and adopted weighted iterative least square method to solve these problems. Then a weighted principal component analysis was used to calculate sample reliability. After that, the sample reliability, category and neighbour- hood information were integrated, and the distance between the samples was redefined. Finally multidimensional scaling and generalized regression neural network were applied to construct the embedding coordinates of training samples and test points by means of the new distance ma- trix. Experimental results demonstrate that the proposed method has higher anti-noise per- formance than the traditional one. It can effectively improve the classification precision of hyperspectral image with feasible runtime, which is an effective feature extraction method for hy-perspectral remote sensing image.
出处 《中国矿业大学学报》 EI CAS CSCD 北大核心 2017年第4期932-938,共7页 Journal of China University of Mining & Technology
基金 国家自然科学基金项目(61401185)
关键词 高光谱 特征提取 样本可信度 样本类别 等距特征映射 hyperspectral feature extraction sample credibility sample classification isomet-ric feature mapping
  • 相关文献

参考文献4

二级参考文献51

共引文献39

同被引文献44

引证文献5

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部