期刊文献+

数据库样本缺失下的雷达辐射源识别 被引量:6

Radar Emitter Identification in Database Sample Missing Condition
下载PDF
导出
摘要 目前,基于机器学习的雷达辐射源识别技术大多以训练集和测试集同分布为假设,当雷达数据库样本不足导致与信号真实分布存在偏差时,传统的分类方法效果不佳。为此,将迁移学习理论引入识别系统,设计了一种基于结构发现与再平衡的雷达辐射源信号识别方法。通过对数据库和待识别辐射源信号样本进行聚类分析发现数据结构信息,通过重采样处理修正其分布差异。将新采样数据输入支持向量机进行训练并对侦收样本进行识别。仿真实验表明,在新训练样本集上学习的模型对测试集的分类性能有了很大的提升。 Present radar emitter identification based on machine learning technology mostly assumes that training set and test set are same. When the radar database and the true distribution of the signals are bi- ased,the traditional classification method is ineffective. Thus, the theory of transfer learning is introduced into the identification system,and a radar emitter signal identification method based on structural discovery and re-balancing is proposed. By means of database data and target data clustering analysis and resam-pling ,the distribution is corrected and the new data is put to support vector machine ( SVM) for training and identifying reconnaissance samples. The simulation results show that the classification performance of the support vector machine model in the new training sample set has been greatly improved.
作者 李蒙 朱卫纲
出处 《电讯技术》 北大核心 2017年第7期784-788,共5页 Telecommunication Engineering
关键词 雷达辐射源识别 迁移学习 结构发现 再平衡 支持向量机 radar emitter identification transfer learning structural discovery re-balancing support vector machine( SVM)
  • 相关文献

参考文献3

二级参考文献41

  • 1郑生华,徐大专,靳学明,章仁飞.基于时频分析的雷达侦察信号处理技术[J].重庆大学学报(自然科学版),2006,29(11):96-100. 被引量:10
  • 2DUDA R O,HART P E,STORK D G.Pattern Classification[M].Second Edition,New York:John Wiley & Sons,2001.
  • 3BISHOP C M.Pattern Recognition and Machine Learning[M].New York:Springer Verlag,2006.
  • 4TAX D M J.One-Class Classification:Concept-Learning in the Absence of Counter-Examples[D].Delft University of Technology,2001.
  • 5TAX D M J,DUIN R P W.Support Vector Data Description[J].Machine Learning,2004,54(1):45-66.
  • 6VAPNIK V.Statistical Learning Theory[M].New York:John Wiley & Sons,Inc.1998.
  • 7CHRISTOPHER J C,BURGES.A Tutorial on Support Vector Machines for Pattern Recognition[J].Data Mining and Knowledge Discovery,1998,2(2):121-167.
  • 8CHEN P H,FAN R E,UN C J.A Study on SMO -Type Decomposition Methods for Support Vector Machines[J].IEEE Trans Neural Networks,2006,17(4):893-908.
  • 9TENENBAUM J B,SILVA V D E,LANGFORD J C.A Global Geometric Framework for Nonlinear Dimensionality Reduction[J].Science,2000,290(5500):2319-2323.
  • 10JOIXIFFE I T.Principal Component Analysis[M].Second Edition,New York:Springer Verlag,2002.

共引文献8

同被引文献87

引证文献6

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部