期刊文献+

紧框架分析模型下的模糊图像盲复原 被引量:2

Blind image restoration based on analysis model under tight frame
下载PDF
导出
摘要 在基于稀疏表示模型的图像盲复原问题中,模糊核估计与稀疏模型的选取是影响盲复原性能的两个关键因素。针对传统基于稀疏表示盲复原方法的不足,本文提出一种基于紧框架分析模型的图像盲复原方法。该方法将盲复原问题分裂为两个迭代的子问题,分别是基于梯度图像的模糊核估计与基于紧框架分析模型的非盲图像复原。在核估计问题中,提出同时约束核稀疏性及一阶微分平滑特性,进一步提高了核估计精度。在紧框架非盲图像复原问题中,提出一种基于Moreau envelope函数的数值计算方法,有效地解决紧框架复原模型的不可微和不可分离性。实验结果表明,本文复原方法在图像细节恢复与客观评价指标方面均优于传统复原算法。 In blind image restoration based on the sparse representation model,kernel estimation and the selection of the sparse model are two significant factors that affect the blind restoration. Considering the imperfections of the conventional blind restoration method based on sparse representation,we propose a novel blind restoration method based on the tight-frame analytical model. This novel method divides the blind restoration problem into two iterative subproblems: kernel estimation based on the gradient image,and non-blind image restoration based on the tightframe model. In the kernel estimation,we propose constraining simultaneously the sparsity of the kernel and the smoothness of the first-order differential of the kernel,which further improves the accuracy of the kernel estimation.In the non-blind image restoration subproblem,we propose a numerical algorithm based on the Moreau envelope function,which can solve the nondifferentiability and inseparability of the tight-frame restoration model. The experimental results show that the proposed method is superior to the conventional methods in relation to both the recovery of image detail and the objective assessment indicators.
出处 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2017年第6期931-938,共8页 Journal of Harbin Engineering University
基金 国家自然科学基金项目(61501147) 中国博士后基金项目(2016M601438) 黑龙江省自然科学基金项目(F2015040) 黑龙江省博士后基金项目(LBH-Z15099)
关键词 图像盲复原 紧框架 核估计 迭代优化 正则化 Moreau envelope函数 blind image restoration tight frame kernel estimation iterative optimization regularization moreau envelope function
  • 相关文献

参考文献2

二级参考文献30

  • 1尹兵,王延斌,刘威.用神经网络鉴别退化图像的模糊类型[J].光学技术,2006,32(1):138-140. 被引量:10
  • 2吕成淮,何小海,陶青川,张敏.图像复原中高斯点扩展函数参数估计算法研究[J].计算机工程与应用,2007,43(10):31-34. 被引量:11
  • 3Raimondo Schettini,Silvia Corchs.Underwater im-age processing:state of art of restoration and imageenhancement methods[C]∥EURASIP Journal onAdvances in Signal Processing,2010:1-14.
  • 4Abd-Krim Segouane.A Kullback-Leibler divergenceapproach to blind image restoration[J].IEEETransaction on Image Processing,2011,20(7):2078-2083.
  • 5Hiloyuki Takeda,Peyman Milanfar.Removing mo-tion blur with space-ime processing[J].IEEETransaction on Image Processing,2011,20(10):2990-3000.
  • 6Michailovich Oleg V.An iterative shrinkage ap-proach to total-variation image restoration[J].IEEETransaction on Image Processing,2011,20(5):1281-1299.
  • 7Deepa Kundur,Dimitrios Hatzinakos.Blind imagedeconvolution[J].IEEE Signal Processing Maga-zine,1996(5):43-64.
  • 8Anat Levin,Yair Weiss,Fredo Durand,et al.Un-derstanding blind deconvolution algorithms[J].IEEE Transactions on Pattern Analysis and MachineIntelligence,2011,33(12):2354-2367.
  • 9Peyman Milanfar.A model of the effect of imagemotion in the Radon transform domain[J].IEEETransactions on Image Processing,1999,8(9):1276-1281.
  • 10Liu Xian-ming,Zhao De-bin,Xiong Rui-qin.Imageinterpolation via regularized local linear regression[J].IEEE Transactions on Image Processing,2011,20(12):3455-3469.

共引文献12

同被引文献19

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部