期刊文献+

基于小波变换的直接接触凝结过程研究 被引量:2

Investigation on characteristics of direct contact condensation basing on wavelet transform
下载PDF
导出
摘要 为研究蒸汽直接接触凝结时的凝结状态及特征,本文利用高速摄像仪和水声换能器采集凝结时的可视化结果及声学信号。实验结果表明,随过冷度和蒸汽流量升高发现4个不同的凝结区域:光滑气泡区、体积波动区、过渡区和毛细波区。对声压波动信号进行db2小波7层分解发现,由气泡破碎和气泡分裂引入的低频声压波动的接近,而不同凝结区域的高频波动不同。小波变换得到的各子信号的能量和相对能量分布在同一凝结区域接近,不同凝结区域存在显著差异,可用于不同凝结状态的识别。 To investigate the condensation state and steam characteristics in direct-contact condensation,we recorded images and acoustic signals using a high-speed video camera and an underwater acoustic transducer,respectively,during the condensation period. The experimental results show that four different condensation regions are encountered as the vapor flow and degree of supercooling are increased: smooth bubbles,volume fluctuation,transition,and capillary waves. By carrying out seven layers of decomposition for the Daubechies db2 wavelet of the sound pressure signal,we find that the low-frequency sound pressure oscillations induced by bubble collapse and bubble split-up are similar. However,the high-frequency oscillations are different for different condensation regions. Furthermore,the absolute and relative energies attained by wavelet transform are distributed in the same condensation region,whereas marked differences exist between different condensation regions. This feature could be used to distinguish between different condensation states.
出处 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2017年第6期969-974,共6页 Journal of Harbin Engineering University
基金 国家自然科学基金项目(11475048 51376052)
关键词 直接接触凝结 声压波动 小波变换 气泡破碎 相变 时频域分析 毛细波 direct contact condensation sound pressure oscillation wavelet transform bubble collapse phase change time-frequency analysis capillary wave
  • 相关文献

参考文献2

二级参考文献23

  • 1铁勇,刘洋,李树华.广义相关时延估计方法在漏水检测定位中的应用[J].内蒙古大学学报(自然科学版),2007,38(2):216-219. 被引量:4
  • 2CHEN Gong(陈珙) WANG Bao-liang(王保良).YANG Jiang(杨江) LI Hai-qing(李海青).Application of wavelets transform to the fuzzy identification of gas-solid two-phase flow regimes(基于小波变换的气液两相流流型模糊辨识)[J].J Chem Eng of Chinese Univ(高校化学工程学报),1999,13(4):303-308.
  • 3Bakshi B R, Zhong H, Jiang P, Fan L S. Analysis of flow in gas-liquid bubble columns using multi-resolution methods [J].Trans IChE, 1995, 73, Part A: 608-614.
  • 4Ran J, Mao Q, Li J, Lin W. Wavelet analysis of dynamic behavior in fluidized beds [J]. Chemical Engineering Science, 2001,56: 981-988.
  • 5Li J, Compromise and resolution--Exploring the multi-scale nature of gas-solid fluidization [J]. Powder Technology, 2000, 111:50-59.
  • 6Lu X, Li H. Wavelet analysis of pressure fluctuation signals in a bubbling fluidized bed [J]. Chemical Engineering Journal,1999, 75:113-119.
  • 7Zhou H, Lu J, Lin L. Turbulence structure of the solid phase in transition region of a circulating fluidized bed [J]. Chemical Engineering Science, 2000, 55: 839-847.
  • 8He Z, Zhang W, He K, Chen B. Modeling pressure fluctuations via correlation structure in a gas-solids fluidized bed [J]. AIChE J, 1997, 43(7): 1914-1920.
  • 9Daubechies I. Orthonormal bases of compactly supported wavelets [J]. Comm Pure Appl Math, 1988, 41 : 909-996.
  • 10Mallat S. A theory for multiresolution signal decomposition: the wavelet representation [J]. IEEE Trans Pattern Anal Mach Intell, 1989, 11(7): 674-693.

共引文献24

同被引文献28

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部