摘要
基于教师能力诊断进行教师分类,进而为其制订个性化培训项目已经成为国际学术界研究的热点问题。本研究借助于我国7个地区6560名中学科学教师的调查数据,对其进行统计分析,提出了"选取关键诊断指标,对大数据样本聚类分析,由聚类结果寻找类别特征为制定培训方案提供依据"的教师培训分类方法,为教师分类培训提供一种可操作、可发展的新思路。该方法的分类指标是"科学本质观、课堂教学行为和批判性思维倾向",由此得出的五种教师类型为"求真开放型"、"经典保守型"、"迷茫激进型"、"机械应试型"和"被动应付型"。新分类方案的有效性得到了样本数据较好的检验。
Needs-based training through classification for teachers has been a hot spot in international education research community.Based on the survey data from 6,560 junior middle school science teachers' from seven regions in China,this study proposes a three-steps classification method that"selecting key indicators for science teachers,conducting a cluster analysis of big data samples,and identifying characteristics of all types based on the result of automatic clustering".It provides a new feasible and developmental scheme for teacher training.Three key proxes in the classification method are"the view on nature of science,teaching behavior,and critical thinking disposition";According to the proxes,five types of teachers has beenidentified and nominated as"open-minded teachers","Conservative teachers","radical teachers","exam-oriented teachers"and"passive teachers".The validity of the new classification scheme was verified by the survey data.
作者
张殷
张红霞
罗星凯
ZHANG YIN ZHANG Hongxia LUO Xingkai(Institute of Education, Nanjing University, Nanjing 210093, China Guangxi Normal University, Guangxi 541004, China National Innovation Center for Assessment of Basic Education Quality,Beijin 100875,China)
出处
《教育科学》
CSSCI
北大核心
2017年第2期35-40,共6页
Education Science
基金
北京师范大学中国基础教育质量监测协同创新中心"区域教育质量健康体检与改进提升"项目研究成果之一
关键词
科学教师
教师分类
培训需求
聚类分析
需求诊断
science teacher
teacher classification
teacher training needs
cluster analysis
diagnosis of needs