期刊文献+

基于量子化学方法发现新型酪氨酸激酶抑制剂

Based on the quantum chemical method to find new tyrosine kinase inhibitors
原文传递
导出
摘要 采用量子化学中的密度泛函理论方法,在B3LYP/6-31++G水平下,系统计算了11种亚苄丙二腈类衍生物的量子化学参数,并通过回归分析方法,构建了二维定量构效模型,分析了影响活性抑制的主要因素,并建立了亚苄丙二腈衍生物与抑制酪氨酸激酶活性之间的定量构效关系方程,研究结果表明:该类化合物分子的分子总能量ET与疏水性参数log P对抑制活性的影响最大,且疏水性能越强,分子的活性抑制能力越高。在此基础上,使用留一法交叉验证了模型的预测能力,结果表明,模型的回归系数和留一法交叉验证系数分别为0.796和0.7291,表明模型具有较好的预测能力,可以用于预测此类化合物的活性。基于结构相似性,设计了4种新型的亚苄丙二腈类衍生物分子,在相同水平下计算其量子化学参数,并预测其活性,结果表明这些新型新型酪氨酸激酶抑制剂均具有较好的活性,研究结果为进一步设计性能更好的酪氨酸激酶抑制剂提供了理论参考。 The quantum chemical parameters of 11 kinds of benzylidenemalononitrile derivatives were calculated at the B3LYP / 6-31 ++G level by density fimctional theory, the two-dimensional quantitative structure-activity relationship (QSAR) was constructed by regression analysis, analyzed the main factors of influencing the inhibition of activity and constructed quantitative structure-activity relationship between benzimoniummalononitrile derivative and inhibiting tyrosine kinase activity. The results showed that, the molecular total energy ET and the hydrophobicity parameter logP had the greatest influence on the inhibition activity, and the stronger of hydrophobic property, the higher of the molecule's activity inhibition. On this basis, the prediction ability of the model was verified by using the leave-out method. The result showed that the regression coefficients and cross-validation coefficients of the model are 0.796 and 0.7291, respectively, which indicated that the model has good prediction ability, could be used to predict the activity of such compounds. Based on structural similarity, 4 kinds of benzylidenemalononitrile derivatives were designed and calculated the quantum chemical parameters at the same level and its activity was predicted. These new results showed that the new tyrosine kinase inhibitors have better activity, which provide a theoretical reference for the further design of better tyrosine kinase inhibitors.
作者 袁钰涵 王智慧 范旖旎 任玉婷 陈双扣 Yuan Yuhan Wang Zhihui Fan Yini Ren Yuting Chen Shuangkou(College of Life Science and Engineering, Northwest University for Nationalities, Lanzhou 730124, China College of Chemistry and Chem-engineering, Chongqing University of Science and Technology, Chongqing 401331, China)
出处 《计算机与应用化学》 CAS 2017年第6期481-484,共4页 Computers and Applied Chemistry
关键词 亚苄丙二腈类衍生物 DFT 量子化学计算 QSAR 新分子设计 bezylidenmalononitrile derivatives DFT quantum chemical calculation QSAR new molecular design
  • 相关文献

参考文献2

二级参考文献20

  • 1庞素华,郭宗儒.酪氨酸蛋白激酶抑制剂的研究进展[J].药学学报,1996,31(1):75-80. 被引量:8
  • 2Brian PouRed S, Furumura M, Sviderskaya EV, Santis C, Bennett DC and Hearing VJ. Normal tyrosine transport and abnormal tyrosinase routing in pink-eyed dilution melanocytes. Exp Cell Res, 1998, 244( 1 ) :319 -326.
  • 3Alvaro SF, Jose NR-L and Francisco GC. Tyrosinase:a comprehensive review of its mechanism. Biochim Biophys Acta-Protein Struet Molec Enzym, 1995, 1247(1):1-11.
  • 4Yao SW, Lopes VHC, Fernaandez F, Morales M, Rodrguez-Borgesc JE and Cordeiroa MNDS. Synthesis and QSAR study of the anticancer activity of some novel indane carbocyclic nucleosides. Bioorg Med Chem, 2003, 11 (23) :4999 - 5006.
  • 5Zheng F, Bayram E, Sumithran SP, Ayers JT, Zhan CG, Schmitt JD, Dwoskin LP and Crooks PA. QSAR modeling of mono- and bisquaternary ammonium salts that act as antagonists at neuronal nicotinic acetylcholine receptors mediating dopamine release. Bioorg Med Chem, 2006, 14(9) :3017 -3037.
  • 6Lorena GF, Jose Neptuno RL, Francisco GS, Pedro Antonio GR, Ramon V, Francisco G-C and Jose T. Analysis and interpretation of the action mechanism of mushroom tyrosinase on monophenols and diphenols generating highly unstable o-quinones. Biochim Biophys.Acta-Protein Struct Molec Enzym, 2001, 1548( 1 ) :1 -22.
  • 7Frisch M J, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA, Jr, Vreven T, Kudin KN, Burant JC, Millam JM, lyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong M. W, Gonzalez C, Pople JA. Gaussian 03, Revision A. 1, Gaussian, Inc. , Pittsburgh PA, 2003.
  • 8Zhang JP, Chen QX, Song KK and Xie JJ. Inhibitory effects of salicylic acid family compounds on the diphenolase activity of mushroom tyrosinase. Food Chem, 2006, 95(4):579-584.
  • 9Chen QX, Song KK, Qiu L, Liu XD, Huang H and Guo HY. Inhibitory effects on mushroom tyrosinase by p-alkoxybenzoic acids. Food Chem, 2005, 91(2) :269-274.
  • 10Huang XH, Chen QX, Wang Q, Song KK, Wang J, Sha L and Guan X. Inhibition of the activity of mushroom tyrosinase by alkylbenzoic acids. Food Chem, 2006, 94( 1 ) :1 -6.

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部