摘要
Fossil fuel combustion and many industrial processes generate gaseous emissions that contain a number of toxic organic pollutants and carbon dioxide(CO_2) which contribute to climate change and atmospheric pollution.There is a need for green and sustainable solutions to remove air pollutants,as opposed to conventional techniques which can be expensive,consume additional energy and generate further waste.We developed a novel integrated bioreactor combined with recyclable iron oxide nano/micro-particle adsorption interfaces,to remove CO_2,and undesired organic air pollutants using natural particles,while generating oxygen.This semi-continuous bench-scale photo-bioreactor was shown to successfully clean up simulated emission streams of up to 45% CO_2 with a conversion rate of approximately 4%CO_2 per hour,generating a steady supply of oxygen(6 mmol/hr),while nanoparticles effectively remove several undesired organic by-products.We also showed algal waste of the bioreactor can be used for mercury remediation.We estimated the potential CO_2 emissions that could be captured from our new method for three industrial cases in which,coal,oil and natural gas were used.With a 30% carbon capture system,the reduction of CO_2 was estimated to decrease by about 420,000,320,000 and 240,000 metric tonnes,respectively for a typical 500 MW power plant.The cost analysis we conducted showed potential to scale-up,and the entire system is recyclable and sustainable.We further discuss the implications of usage of this complete system,or as individual units,that could provide a hybrid option to existing industrial setups.
Fossil fuel combustion and many industrial processes generate gaseous emissions that contain a number of toxic organic pollutants and carbon dioxide(CO_2) which contribute to climate change and atmospheric pollution.There is a need for green and sustainable solutions to remove air pollutants,as opposed to conventional techniques which can be expensive,consume additional energy and generate further waste.We developed a novel integrated bioreactor combined with recyclable iron oxide nano/micro-particle adsorption interfaces,to remove CO_2,and undesired organic air pollutants using natural particles,while generating oxygen.This semi-continuous bench-scale photo-bioreactor was shown to successfully clean up simulated emission streams of up to 45% CO_2 with a conversion rate of approximately 4%CO_2 per hour,generating a steady supply of oxygen(6 mmol/hr),while nanoparticles effectively remove several undesired organic by-products.We also showed algal waste of the bioreactor can be used for mercury remediation.We estimated the potential CO_2 emissions that could be captured from our new method for three industrial cases in which,coal,oil and natural gas were used.With a 30% carbon capture system,the reduction of CO_2 was estimated to decrease by about 420,000,320,000 and 240,000 metric tonnes,respectively for a typical 500 MW power plant.The cost analysis we conducted showed potential to scale-up,and the entire system is recyclable and sustainable.We further discuss the implications of usage of this complete system,or as individual units,that could provide a hybrid option to existing industrial setups.
基金
supported by Natural Sciences and Engineering Research Council of Canada(NSERC)-NSERC CREATE Mine of Knowledge,FRQNT(Fonds de recherche du Québec-Nature et Technologies),and Environment Canada