摘要
为了解决迁移学习的欠适配问题,将粒模型作为候选模型的集合,通过模型选择的方式引入目标域的辅助模型中包含的标注规则,提出粒模型推断中基于似然比的模型选择方法(likelihood ratio model selection,LRMS),实现了辅助模型与粒模型的融合。LRMS保持基于Viterbi算法的标注模型对整条序列进行计算的模式,避免了候选标注器对上下文关系的破坏。通过大量词性标注实验表明LRMS在每个迁移学习任务中都有准确率的提高,从而证明似然比模型选择是一种有效的解决欠适配问题的方法。
To solve the under-adaptation problem of transfer learning,in this paper the granular model is used as a set of candidate models,and labeling rules contained in minor for target domain models is introduced by a model selection method. We propose a Likelihood Ratio based Model Selection method(LRMS) for the inference of granular model,which implements the fusion of minor models with the granular model. LRMS keeps the single-path calculating of Viterbibased sequence labeling model,which avoid the violation of contextual connections. In empirical experiments on part-of-speech tagging,LRMS improves the accuracy in every transfer learning task,therefore,the effectiveness of LRMS in solving the under-adaptation problem is verified.
作者
孙世昶
林鸿飞
孟佳娜
刘洪波
SUN Shi-chang LIN Hong-fei MENG Jia-na LIU Hong-bo(School of Computer, Dalian University of Technology, Dalian 116023, Liaoning, China School of Computer, Dalian Minzu University, Dalian 116600, Liaoning, China Information Science and Technology College, Dalian Maritime University, Dalian 116026, Liaoning, China)
出处
《山东大学学报(理学版)》
CAS
CSCD
北大核心
2017年第6期24-31,共8页
Journal of Shandong University(Natural Science)
基金
国家自然科学基金资助项目(61472058
61572102)
辽宁省自然科学基金引导计划项目(201602195
201700334)
中央高校自主基金资助项目(DC201502030202)
关键词
迁移学习
似然比
模型选择
词性标注
transfer learning
likelihood ratio
model selection
part-of-speech tagging