期刊文献+

基于自适应流形相似性的图像显著性区域提取算法 被引量:1

An image saliency object detection algorithm based on adaptive manifold similarity
原文传递
导出
摘要 为了在图像显著性区域提取过程中改善算法的自适应性和精准度,提出基于自适应流形相似性的图像显著性区域检测算法。将图像分割成超像素,根据图像中显著性区域频率变化比较大的特性,生成图像显著性区域的高频节点;针对高频节点利用凸包运算寻找显著性区域的种子节点;使用流形算法在图像中对种子节点进行显著性区域信息扩散,得到图像的显著性区域。试验结果表明:利用流形算法搭建求解每个数据的邻接矩阵进行信息扩散,能够在保证信息精准分类的同时提高算法的自适应性,其结果优于同类的图像显著性区域检测算法。 In order to improve the adaptability and precision in extracting salient regions in images, an image salient re- gion detection algorithm was proposed based on adaptive manifold similarity. An input image was segmented into super- pixels which were represented as the nodes in a graph. The node with high frequency was generated by the characteris- tics of the salient regions. Convex hull computation was used to generate the saliency seeds of the salient object area ac- cording to high-frequency nodes. The proposed algorithm was used to complete information reconstruction of the current image by adaptively assessing the salient weights on the edges between the nodes. In addition, based on local character- istics information reconstruction, the proposed algorithm utilized similarity extraction function to self-adaptively obtain the similarity characteristics and manifold structures in order to spread salient characteristics information. The experi- mental results showed that the quadratic programming solution exploited to compute the weights between the nodes could effectively avoid threshold selection and enhance robustness accordingly, and the proposed method performed better than the other state-of-the-art methods.
作者 任永峰 董学育 REN Yongfeng DONG Xueyu(Electrical Power Simulation and Control Engineering Center, Nanjing Institute of Technology, Nanjing 210013, Jiangsu, China)
出处 《山东大学学报(工学版)》 CAS 北大核心 2017年第3期56-62,共7页 Journal of Shandong University(Engineering Science)
基金 江苏省高校自然科学研究面上资助项目(14KJB520006)
关键词 显著性检测 自适应 流形相似 凸包运算 显著信息扩散 saliency detection adaptive manifold similarity convex hull computation spread salient characteristics
  • 相关文献

参考文献4

二级参考文献79

  • 1张鹏,王润生.基于视点转移和视区追踪的图像显著区域检测[J].软件学报,2004,15(6):891-898. 被引量:53
  • 2ZHANG Y, KISELEWICH S J, BAUSON W A, et al. Robust moving object detection at distance in the visible spectrum and beyond using a moving camera[C]//Computer Vision and Pattern Recognition Workshop. New York:[s. n. ] , 2006:131-138.
  • 3STAUFFER C, GRIMSON W E L. Adaptive background mixture models for real-time tracking [ C ]//Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Fort Collins: IEEE Computer Society Press, 1999, 2:246-252.
  • 4LAURENT I, CHRISTOF K, ERNST N. A model of saliency-based visual attention for rapid scene analysis [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998, 20( 11 ) : 1254-1259.
  • 5DIRK W. Interactions of visual attention and object recognition : computational modeling, algorithms, and psychophysics [ D ]. California: California Institute of Technology Pasadena, 2006.
  • 6MA Yufei, HUA Xiansheng, LU Lie, et al. A generic framework of user attention model and its application in video summarization [J]. IEEE Transactions on Multimedia, 2005, 7 ( 5 ) : 907-919.
  • 7LIU Arian, ZHANG Yongdong, SONG Yan, et al. Human attention model for semantic scene analysis in movies [ C ]//Proceedings of IEEE International Conference on Multimedia and Expo. New York: IEEE Press, 2008: 1473-1476.
  • 8SIAGIAN C, LAURENT I. Biologically inspired mobile robot vision localization [ J]. IEEE Transactions on Robotics, 2009, 25(4): 861-873.
  • 9DIRK W, EDGINGTON D R, CHRISTOF K. Detection and tracking of objects in underwater video [ C ]//IEEE Proceedings Computer Vision and Pattern Recognition. Washington D C: IEEE Computer Society Press, 2004: 61-73.
  • 10DIRK W, CHRISTOF K. Modeling attention to salient proto-objects [ J ]. Neural Networks, 2006, 19 ( 9 ) : 1395-1407.

共引文献19

同被引文献9

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部