期刊文献+

CFD在高速滑行表面性能预报中的应用 被引量:4

Application of CFD in predicting performance of high-speed planing hulls
下载PDF
导出
摘要 针对滑行表面数值预报结果中船底出现异常水气分布的问题,基于三种常用CFD软件FLUENT、CFX及STAR-CCM+研究了VOF界面插值格式、网格类型及数目等因素对滑行表面性能数值预报的影响,并提出相应改善数值计算模拟的具体措施。研究表明:基于相同的结构化网格及计算设置时,采用几何重构界面插值格式预报滑行块的阻力及底部水气分布上最为准确,CICSAM格式次之,修正HRIC格式最弱。通过选择合理的网格类型及网格数目也可以改善滑行船体性能预报精度。CFX采用四面体网格,STAR-CCM+采用多面体网格可以较为准确预报滑行艇体的流场和阻力。建议在滑行艇的阻力及流场预报中采用几何重构的VOF界面插值方式,选择合理的网格类型并进行适当的网格加密可以提高水气界面捕捉的精度,减小阻力预报的误差。 In order to solve the problem of unreasonable water distribution at planing hulls in numeri- cal simulation, VOF interface interpolation scheme and mesh types are studied and several measures are proposed to improve the capabilities of FLUENT, CFX and STAR-CCM+ in predicting the per- formance of planing hulls. With the same hexahedral mesh and simulation setting, geo-reconstruct gives the best prediction in resistance and water distribution at planing hull, while HRIC gives the worst prediction. Suitable mesh type and mesh density could also improve the performance prediction. To improve the prediction accuracy, tetrahedral mesh should be used in CFX and polyhedral mesh should be used in STAR-CCM+. It's advisable that suitable mesh type and mesh density or geo- reconstruct scheme should be adopted to improve the capabilities of CFD codes in predicting the per- formance of planing hulls.
出处 《海军工程大学学报》 CAS 北大核心 2017年第3期59-64,共6页 Journal of Naval University of Engineering
基金 国家自然科学基金资助项目(51209212)
关键词 CFD 滑行表面 阻力 水气分布 几何重构 网格类型 CFD planing hull resistance water and air distribution geo-reconstruct mesh type
  • 相关文献

参考文献2

二级参考文献16

  • 1彭公武.滑行艇阻力的近似计算方法[J].武汉船舶职业技术学院学报,2003,2(3):32-35. 被引量:7
  • 2张志荣,李百齐,赵峰.船舶粘性流动计算中湍流模式应用的比较[J].水动力学研究与进展(A辑),2004,19(5):637-642. 被引量:48
  • 3徐玉如,苏玉民,庞永杰.海洋空间智能无人运载器技术发展展望[J].中国舰船研究,2006,1(3):1-4. 被引量:87
  • 4董文才,刘志华,吴晓光,岳国强.滑行艇波浪中纵向运动理论预报的新方法[J].船舶力学,2007,11(1):55-61. 被引量:20
  • 5Chambliss D B, Boyd G M. The planing characteristics of two V-shaped prismatic surfaces having angles of deadrise of 20 and 40[R1. Ianglev Aeronautical Laboratory, NACA. Tech. Note 2876. Washington, 1953.
  • 6J Savitsky D. Hydrodynamic design of planing hulls[J]. Marine Technology, 1964, 1(1): 71-95.
  • 7Zhao R, Faltinsen O M, Haslum H. A simplified non-linear analysis of a high-speed planing craft in calm water[C]// FAST'97. ed. N. Baird. South Yarra, Victoria, and London: Baird Publications, 1997, 1: 431-438.
  • 8Azcueta R. Computation of turbulent free-surface flows around ships and floating bodies[D]. Ph. D. Thesis. Technical U- niversity Hamburg-Harburg, 2001.
  • 9Azcueta R. RANSE simulations for sailing yachts including dynamic sinkage & trim and unsteady motion in waves[R]. High Performance Yacht Design Conference, Auckland, 2002.
  • 10Azueta R. Steady and unsteady RANSE simulation for planning craft[C]//The 7th Conference on Fast Sea Transportation, FASR'03. lschia, Italy, 2003.

共引文献42

同被引文献35

引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部