期刊文献+

Combustion characteristics of nanofluid fuels in a half-opening slot tube 被引量:2

Combustion characteristics of nanofluid fuels in a half-opening slot tube
原文传递
导出
摘要 Combustion characteristics of nanofluid fuels containing aluminum nanoparticles were investigated in half-opening slot tubes from the fundamental view. The effects of particle loading rates(0.25% and 2.5% by weight), type of base fuels(ethanol and butanol),and fuel flow rates(0.2, 0.6, and 1 mL/min) were studied in details. The combustion characteristics of the nanofluid fuels and pure based fuels were also examined to provide a comparison. Flame was unstable with reignition, stable state, nearly extinguishment repeatedly at low flow rate. At medium flow rate, flame height was increased and flame tended to be stable. At high flow rate,flame became unstable and was disturbed by the droplet forming and dripping significantly. Al atoms inside the oxide layer should be melted before the particles combustion, while Al oxide layer should be melted before the particles aggregates combustion. The effects of particles on the combustion characteristics, especially on the evaporation rate of base fuel, were discussed. The reasons for various combustion phenomena of nanofluid fuels were given, which can provide the useful guidance for the experimental research and practical applications of nanofluid fuels. Combustion characteristics of nanofluid fuels containing aluminum nanoparticles were investigated in half-opening slot tubes from the fundamental view. The effects of particle loading rates(0.25% and 2.5% by weight), type of base fuels(ethanol and butanol),and fuel flow rates(0.2, 0.6, and 1 mL/min) were studied in details. The combustion characteristics of the nanofluid fuels and pure based fuels were also examined to provide a comparison. Flame was unstable with reignition, stable state, nearly extinguishment repeatedly at low flow rate. At medium flow rate, flame height was increased and flame tended to be stable. At high flow rate,flame became unstable and was disturbed by the droplet forming and dripping significantly. Al atoms inside the oxide layer should be melted before the particles combustion, while Al oxide layer should be melted before the particles aggregates combustion. The effects of particles on the combustion characteristics, especially on the evaporation rate of base fuel, were discussed. The reasons for various combustion phenomena of nanofluid fuels were given, which can provide the useful guidance for the experimental research and practical applications of nanofluid fuels.
出处 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2017年第7期1075-1087,共13页 中国科学(技术科学英文版)
基金 supported by the National Natural Science Foundation of China(Grant No.51576100) the Jiangsu Provincial Natural Science Foundation of China(Grant No.BK20140034) the Jiangsu Provincial Project of“Six Talent Summit”(Grant No.2014-XNY-002)
关键词 流体燃料 燃烧特性 槽管 纳米粒子 火焰高度 颗粒燃烧 稳定状态 铝氧化物 nanofluid fuel combustion aluminum ethanol butanol
  • 相关文献

同被引文献16

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部