摘要
通过对ProgrammableWeb在线社区进行研究,发现网站上的API服务数量庞大且含有丰富的数据信息。讨论了网页采集、数据预处理等相关技术,利用K-Means和凝聚层次聚类技术在API服务数据集上进行实验,实验结果表明,K-Means算法具有更好的聚类效果。
Through the research of the ProgrammableWeb online community, we found that there are large number of API services which have rich data on the web site, people need to quickly and effectively find the desired service. This paper discusses the related technologies of collection and data preprocessing etal. We carry out experiments on the data set of API web services by means of techniques of K-Means and agglomerative hierarchical clustering. The experimental results show that the K-Means algorithm has a better effect on clustering.
出处
《软件导刊》
2017年第7期149-151,共3页
Software Guide