期刊文献+

基于蜜蜂进化遗传算法优化SVM的超短期风电功率预测

Ultra short term wind power prediction based on Bee Evolutionary Genetic Algorithm to optimize SVM
下载PDF
导出
摘要 提出了基于蜜蜂进化型遗传算法优化支持向量机(SVM)的超短期风电功率预测方法。针对遗传算法在优化支持向量机参数存在的早熟问题,提出了将蜜蜂进化型遗传算法应用于优化支持向量机参数,提高了搜索效率。通过某风电场预测数据进行对比实验,验证了该方法可以有效提高预测准确率和精度。 An ultra short term wind power prediction method based on bee evolutionary genetic algorithm (SVM) is proposed. Aiming at the premature problem of genetic algorithm in optimizing the parameters of support vector machines, it is proposed that the bee evolutionary genetic algorithm is applied to optimize the parameters of support vector machines, and the search efficiency is improved. Through the comparison experiment of a wind farm prediction data, it is proved that this method can effectively improve the prediction accuracy and accuracy.
作者 代江 汪明清 田年杰 赵倩 马晶晶 Dai Jiang Wang Mingqing Tian Nianjie Zhao Qian Ma Jingjing(Guizhou Power Grid Dispatch and Control Center, Guiyang 550002 Guizhou, China State Grid Hebei Electric Power Corporation Baoding Supply Branch, Baoding, 071000 Hebei, China)
出处 《贵州电力技术》 2017年第6期23-26,共4页 Guizhou Electric Power Technology
关键词 蜜蜂进化遗传算法 支持向量机(SVM) 超短期风电功率预测 bee evolutionary genetic algorithm support vector machine uhra short term wind power prediction
  • 相关文献

参考文献12

二级参考文献178

共引文献1536

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部