期刊文献+

Ag@AgBr/C_3N_4–凹凸棒石复合材料的制备及光催化脱硫性能(英文) 被引量:6

Preparation of Ag@AgBr/C_3N_4-Attapulgite Composite for Photocatalytic Desulfurization
原文传递
导出
摘要 以凹凸棒石为骨架,通过两步法制备了Ag@AgBr/氮化碳–凹凸棒石复合脱硫光催化剂(Ag@AgBr/FCN–ATP)。研究表明:ATP表面形成了均匀的FCN膜,Ag@AgBr粒子均匀地负载在ATP–FCN表面。与Ag@AgBr相比,Ag@AgBr/FCN–ATP具有大的比表面积和高的可见光响应及分离光生空穴–电子能力。以二苯并噻吩(DBT)为目标硫化物,考察了在可见光下催化剂对DBT的氧化脱除能力。结果表明:Ag与DBT中的S形成σ配位键吸附作用,Ag@AgBr和FCN–ATP之间的异质结构和协同效应有效地促进光生电子的传输且抑制空穴–电子复合。当光照时间为180 min时,Ag@AgBr/FCN–ATP的脱硫率可达85.2%。 Ag@AgBr/C3N4-attapulgite (Ag@AgBr/FCN-ATP) composite photocatalyst for desulfurization was fabricated by a two-step method using ATP as a skeleton. The results show that Ag@AgBr particles are uniformly loaded on the surface of ATP-FCN and FCN membrane is coated on the surface of ATP. Compared to Ag@AgBr, Ag@AgBr/FCN-ATP composite has greater specific surface area, higher visible light response and enhanced hole-electron separation ability. The photocatalytic desulfurization of dibenzothiophene (DBT) under visible light indicates that Ag@AgBr/FCN-ATP can adsorb DBT via σ coordinate interaction between Ag and S atoms, and the heterostructure and the synergistic effect between Ag@AgBr and FCN-ATP can transfer the electron, leading to suppress the electron-hole recombination. After 180 min irradiation, the desulfurization rate of Ag@AgBr/FCN-ATP reaches 85.2%.
出处 《硅酸盐学报》 EI CAS CSCD 北大核心 2017年第7期1024-1030,共7页 Journal of The Chinese Ceramic Society
基金 江苏省科技支撑计划(BE2014100) 江苏省先进催化与绿色制造协同创新中心人才支持项目(ACGM2016-06-11) 中央高校基本科研业务费专项资金(30916014103)
关键词 凹凸棒石 氮化碳 银@溴化银 光催化脱硫 attapulgite carbon nitride silver@silver bromide photocatalytic desulfurization
  • 引文网络
  • 相关文献

参考文献1

二级参考文献38

  • 1Zhu S B, Xu T Q Fu H B, et al Synergetic effect of Bi2W06photocatalyst with C6o and enhanced photoactivity under visibleirradiation. Environ. Sci. Technol., 2007,41(17): 6234-6239.
  • 2Zhang L S, Wang W Z, Chen ZG,et al. Fabrication of flower-likeBi2W06 superstructures as high performance visible-light drivenphotocatalysts. J. Mater. Chem, 2007,17(24): 2526-2532.
  • 3Li Y Y, Liu J P, Huang X T, et al. Hydrothermal synthesis ofBi2WOe uniform hierarchical microspheres. Cryst. Growth Des.,2007,7(7): 1350-1355.
  • 4Liu S W, Yu J G. J. Cooperative self-construction and enhancedoptical absorption of nanoplates-assembled hierarchical BiiWOeflowers. J. Solid State Chem” 2008,181(5): 1048-1055.
  • 5Shi R, Huang G L, Lin J, et al. Photocatalytic activity enhance-ment for Bi2W06 by fluorine substitution. J. Phys. Chem. C, 2009,113(45): 19633-19638.
  • 6Li Y, Huang X,Liu J, et al. Self-assemly of Bi2W06 square nano-plates into hierarchical structure. Journal of Nanoscience andNanotechnology, 2009,9(2): 1530-1534.
  • 7Shang M, Wang W Z, Xu H L. New Bi2W06 nanocages with highvisible-light-driven photocatalytic activities prepared in refluxingEG. Crystal Growth & Design, 2009,9(2): 991-996.
  • 8Zhang G K, Lii F, Li M, et al. Synthesis of nanometer Bi2W〇6synthesized by Sol-Gel method and its visible-light photocatalyticactivity for degradation of 4BS. J. Phys. Chem. Solids, 2010, 71(4): 579-582.
  • 9Huang Y, Ai Z H, Ho W K, et al. Ultrasonic spray pyrolysis syn-thesis of porous Bi2W06 microspheres and their visible-light-induced photocatalytic removal of NO. J. Phys. Chem. C,2010,114(14): 6342-6349.
  • 10Wu L, Bi J H, Li Z H, et al. Rapid preparation of Bi2W06 photo-catalyst with nanosheet morphology via microwave-assisted sol-vothermal synthesis. Catalysis Today, 2008,131(1-4): 15-20.

共引文献9

同被引文献86

引证文献6

二级引证文献73

相关主题

;
使用帮助 返回顶部