摘要
使用有限元软件Abaqus计算了考虑马氏体相变影响时9%Cr钢管道多道接头中的应力演化过程,并分析了马氏体相变在应力演化中的作用。结果表明,在管道纵截面上,环向和轴向残余应力的分布相似,但环向残余应力较大。环向和轴向残余压应力的最大值均出现在末道焊缝及热影响区,残余拉应力的最大值则出现在管道中部的焊缝及热影响区,而管道内壁附近的残余应力较低。在末道焊缝附近,发生在较低温度下的马氏体相变不仅抵消了焊缝和热影响区热收缩所形成的拉应力,并且形成了显著的压应力,但马氏体相变并没有消除次表层焊缝显著的残余拉应力。末道焊道对多道焊接头残余应力的影响最大,其原因是马氏体相变虽然在先焊焊缝中形成了很高的压应力,但后续焊道的焊接热循环会显著降低该压应力,使最终结果表现为马氏体相变只显著地降低了末道焊缝及其热影响区内的拉应力,并形成了显著的压应力。马氏体相变对管道外壁附近残余应力的影响较大,而对管道内壁附近残余应力的影响较小。
It has been recognized that low temperature martensitic transformation can reduce harmful tensile stress and generate beneficial compressive stress in weld zone of single pass welded joints. The influence of martensitic transformation is even greater in 9%Cr steel because of its high hardenability and low transformation temperature (about 100-400 ℃). However, compressive stress was confined in certain parts of weld zone in multi-pass butt-welded 9%Cr steel pipes. In this work, stress evolution in a multi-pass butt-welded 9%Cr steel pipe was predicted using Abaqus software, and the effect of martensitic transformation was further investigated. The simulated results show that the overall pattern for the axial and hoop stresses appears to be similar, despite the lower magnitudes for axial stress. The maximum compressive stress was found in the final weld pass, and the maximum tensile stress was formed in the weld pass adjacent to the final weld pass. Stress in weld passes adjacent to weld root is relatively low. Tensile stress due to thermal contraction in the final weld pass was relieved by martensitic transformation and clear compressive stress was formed. However, little effect of martensitic transformation was found on the significant tensile residual stress in weld passes adjacent to the final weld pass. The final weld pass has the primary effect on the formation of residual stress. Compressive stress was indeed generated by martensitic transformation in former weld pass, however it was relieved by weld thermal cycle of latter weld pass. As a result, the effect of martensitic transformation appears to be confined to the final weld pass. The influence of martensitic transformation is greater around outer surface than that around inner surface.
出处
《金属学报》
SCIE
EI
CAS
CSCD
北大核心
2017年第7期888-896,共9页
Acta Metallurgica Sinica
基金
国家自然科学基金项目Nos.51374153和51574181
先进焊接与连接国家重点实验室开放课题项目No.AWJ-Z15-02~~
关键词
9%Cr热强钢
多道焊
数值模拟
马氏体相变
残余应力
9%Cr heat-resistant steel, multi-pass welding, numerical analysis, martensitic transformation, residual stress