期刊文献+

氧化石墨烯改性PMIA膜的制备及性能研究 被引量:6

Preparation and Properties of Graphene Oxide Modified PMIA Membrane
下载PDF
导出
摘要 通过氧化石墨烯(GO)改性聚间苯二甲酰间苯二胺(PMIA)膜,制备出复合纳滤膜,测试了不同GO含量对膜的各种性能和结构的作用;分别通过扫描电镜、接触角、ζ电位仪测定膜的亲水性、表面性能、结构,并以牛血清蛋白测试其抗污染性。结果表明,PMIA/GO膜的内部会出现较大的指状孔结构,而未改性PMIA膜内无指状孔;PMIA/GO复合膜相比与未改性的PMIA膜其具有更高的电负性和亲水性。当操作压力为0.7 MPa、当加入的GO的质量分数为0.3%的时,膜具有145 L/(m2·h)的纯水通量,比纯PMIA膜的纯水通量提高约2.6倍。在PMIA/GO复合纳滤膜具有优异的抗污染能力。 Graphene oxide (GO) modified poly (m-phenylene isophthalamide) composite nanofiltration membrane (PMIA/GO) was prepared via the phase inversion method, and the effects of different GO contents on the structure and properties of the membranes were investigated. The hydrophilic, surface properties, structure and anti-fouling performance of prepared PMIA/GO membranes were analyzed by SEM, contact angle and ζ-potential. The results showed that, the more finger-like pores appeared in the interior of the PMIA/GO membrane, but no finger-like pores appeared in unmodified PMIA/GO membrane. The higher negative charged and hydrophilic PMIA/GO composite membrane was successfully prepared by GO modification. And the water flux of the PMIA/GO (mass fraction of GO is 0.3%) membrane improved from 48.3 L/(m2.h) to 145 L/(m2,h) under the operating pressure of 0.7 MPa, while the membrane had the excellent antifouling properties.
出处 《水处理技术》 CAS CSCD 北大核心 2017年第7期119-123,共5页 Technology of Water Treatment
基金 国家自然科学基金(21476248) “十二五”国家科技支撑计划项目(2012BAJ25B02,2012BAJ25B06)
关键词 氧化石墨烯 复合纳滤膜 抗污染 亲水性 graphene oxide PMIA/GO composite nanofiltration membrane anti-fouling hydrophilicity
  • 相关文献

参考文献3

二级参考文献91

  • 1梁希,李建明,陈志,卢铭,曹蕾,刘东杰,贾江宁.新型纳滤膜材料研究进展[J].过滤与分离,2006,16(3):18-21. 被引量:14
  • 2任晓晶,皇甫风云,白云东.芳香聚酰胺纳滤膜的制备及性能研究[J].水处理技术,2007,33(6):25-27. 被引量:8
  • 3Zaheed L, Jachuck R J J. Review of polymer compact heat exchangers, with special emphasis on a polymer film unit [J]. Appl Therm Eng, 2004, 24(16) : 2 323 -2 358.
  • 4Oshina K H, Evans-Strickfaden T T, Highsmith A K, et al. The use of a microporous poly vinylidenceflouride (PVDF) membrane filter to separate contaminating viral particles from biologically important proteins [ J ]. Bio- logicals, 1996, 24(2) : 137 - 145.
  • 5Eda G, Chhowalla M. Chemically derived graphene oxide: Towards large-area thin-film electronics and optoelectronics [J]. Adv Mater, 2010, 22(22) : 2 392 -2 415.
  • 6Wang Z, Yu H, Xia J, et al. Novel GO-blended PVDF ultrafiltration membranes[ J ]. Desalination, 2012, 299 (1) : 50 -54.
  • 7Hummers W S, Offeman R E. Preparation of graphitic oxide[J]. J Am Chem Soc, 1958, 80(6): 1 339 - 1 339.
  • 8Szabo T, Berkesi O, Forgo P, et al. Evolution of sur- face functional groups in a series of progressively oxi- dized graphite oxides [J]. Chem Mat, 2006, 18 ( 11 ) : 2 740 -2 749.
  • 9Nethravathi C, Rajamathi M. Chemically modified gra- phene sheets produced by the solvothermal reduction of colloidal dispersions of graphite oxide [ J ]. Carbon, 2008, 46(14): 1 994-1 998.
  • 10Hontoria-Lucas C, Lopez-Peinado A J, Lopez-Gonzalez J D, et al. Study of oxygen-containing groups in a series of graphite oxides: Physical and chemical characterization [J]. Carbon, 1995, 33(11): 1 585-1 592.

共引文献22

同被引文献36

引证文献6

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部