期刊文献+

二元最小能量小波框架的特征刻画 被引量:1

Characterization for Minimum-Energy Bivariate Framelets
下载PDF
导出
摘要 针对二元小波框架在图像处理中应用的有效性,本文研究二元最小能量小波框架的特征.给出二元最小能量小波框架存在的充分必要条件,刻画了二元最小能量小波框架的特征.通过对加细函数和小波函数对应的面具函数进行多相分解,提出二元最小能量小波框架的分解与重构算法,并给出数值算例. Aiming at the effective application for the bivariate wavelet frames in image procession,we investigate the properties of minimum-energy bivariate wavelet frames. The sufficient and necessary conditions on the existence for the minimum-energy bivariate wavelet frames are established. The characterization for minimum energy bivariate wavelet frames is performed. Decomposition and reconstruction algorithms for minimum-energy bivariate wavelet frames are formulated by implementing the polyphase decomposition on the mask functions that correspond to the refinable functions and the wavelet functions.Two numerical examples are provided.
出处 《应用数学》 CSCD 北大核心 2017年第3期595-602,共8页 Mathematica Applicata
基金 国家自然科学基金项目(61403298) 陕西省自然科学基金项目(2015JM1024)
关键词 最小能量小波框架 框架多分辨分析 多相分解 面具函数 加细函数 Minimum-energy wavelet frame Frames multiresolution analysis Polyphase decom position Mask function Refinable function
  • 相关文献

参考文献7

二级参考文献50

  • 1GAO Xieping,ZHOU Siwang.A study of orthogonal,balanced and symmetric multi-wavelets on the interval[J].Science in China(Series F),2005,48(6):761-781. 被引量:9
  • 2陈清江,张同琦,程正兴,李学志.一类多重向量值双正交小波包的刻划[J].云南大学学报(自然科学版),2006,28(6):472-477. 被引量:7
  • 3黄永东,程正兴.α带小波紧框架的显式构造方法[J].数学物理学报(A辑),2007,27(1):7-18. 被引量:15
  • 4Benedetto J J, Li S. The Theory of Multiresolution Analysis Frame and Applications to Filter Banks. Appl. Comput. Hamon. Anal., 1998(5): 398-437
  • 5Petukhov A. Explicit Construction of Framelets. Appl. Comput. Hamon. Anal., 2001(11): 313-327
  • 6Chui L H, Cheng Z X, Yang Shouzhi. Explicit Construction of Wavelet Tight Frames. Acta Mathematica Scientia, 2004, 24A(1): 94-104
  • 7Chui C K, He W J. Compactly Supported Tight Frames Associated with Refinable Functions. Appl. Comput. Hamon. Anal., 2000(8): 293-319
  • 8Huang Y D, Cheng Z X. Explicit Construction of а-band Wavelet Tight Frames. Acta Mathematica Scientia, 2007, 27A(1): 7-18
  • 9Zhou J. Construction of Orthonormal Wavelets of Dilation Factor 3 with Application in Image Compression and a New Construction of Multivariate Compactly Supported Tight Frame. Doctoral Dissatation. The University of Geogia, 2006
  • 10Chui C K, He W J. Compactly supported tight frames associated with refinable functions[J]. Appl. Comput. Hamon. Anal., 2000, 8(3): 293-319.

共引文献35

同被引文献6

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部