摘要
针对二元小波框架在图像处理中应用的有效性,本文研究二元最小能量小波框架的特征.给出二元最小能量小波框架存在的充分必要条件,刻画了二元最小能量小波框架的特征.通过对加细函数和小波函数对应的面具函数进行多相分解,提出二元最小能量小波框架的分解与重构算法,并给出数值算例.
Aiming at the effective application for the bivariate wavelet frames in image procession,we investigate the properties of minimum-energy bivariate wavelet frames. The sufficient and necessary conditions on the existence for the minimum-energy bivariate wavelet frames are established. The characterization for minimum energy bivariate wavelet frames is performed. Decomposition and reconstruction algorithms for minimum-energy bivariate wavelet frames are formulated by implementing the polyphase decomposition on the mask functions that correspond to the refinable functions and the wavelet functions.Two numerical examples are provided.
出处
《应用数学》
CSCD
北大核心
2017年第3期595-602,共8页
Mathematica Applicata
基金
国家自然科学基金项目(61403298)
陕西省自然科学基金项目(2015JM1024)
关键词
最小能量小波框架
框架多分辨分析
多相分解
面具函数
加细函数
Minimum-energy wavelet frame
Frames multiresolution analysis
Polyphase decom position
Mask function
Refinable function