期刊文献+

Measurement and calculation of solubility of quinine in supercritical carbon dioxide

Measurement and calculation of solubility of quinine in supercritical carbon dioxide
下载PDF
导出
摘要 Solubility of quinine in supercritical carbon dioxide(SCCO_2) was experimentally measured in the pressure range of 8 to 24 MPa, at three constant temperatures: 308.15 K, 318.15 K and 328.15 K. Measurement was carried out in a semi-dynamic system. Experimental data were correlated by iso-fugacity model(based on cubic equations of state, CEOS), Modified Mendez–Santiago–Teja(MST) and Modified Bartle semi-empirical models. Two cubic equations of state: Peng–Robinson(PR) and Dashtizadeh–Pazuki–Ghotbi–Taghikhani(DPTG) were adopted for calculation of equilibrium parameters in CEOS modeling. Interaction coefficients(k_(ij)& l_(ij)) of van der Waals(vdW) mixing rules were considered as the correlation parameters in CEOS-based modeling and their contribution to the accuracy of model was investigated. Average Absolute Relative Deviation(AARD) between correlated and experimental data was calculated and compared as the index of validity and accuracy for different modeling systems. In this basis it was realized that the semi-empirical equations especially Modified MST can accurately support the theoretical studies on phase equilibrium behavior of quinine–SCCO_2 media. Among the cubic equations of state DPGT within two-parametric vd W mixing rules provided the best data fitting and PR within one-parametric vd W mixing rules demonstrated the highest deviation respecting to the experimental data. Overall, in each individual modeling system the best fitting was observed on the data points attained at 318 K, which could be perhaps due to the moderate thermodynamic state of supercritical phase. Solubility of quinine in supercritical carbon dioxide(SCCO2) was experimentally measured in the pressure range of 8 to 24 MPa, at three constant temperatures: 308.15 K, 318.15 K and 328.15 K. Measurement was carried out in a semi-dynamic system. Experimental data were correlated by iso-fugacity model(based on cubic equations of state, CEOS), Modified Mendez–Santiago–Teja(MST) and Modified Bartle semi-empirical models. Two cubic equations of state: Peng–Robinson(PR) and Dashtizadeh–Pazuki–Ghotbi–Taghikhani(DPTG) were adopted for calculation of equilibrium parameters in CEOS modeling. Interaction coefficients(k(ij)& l(ij)) of van der Waals(vdW) mixing rules were considered as the correlation parameters in CEOS-based modeling and their contribution to the accuracy of model was investigated. Average Absolute Relative Deviation(AARD) between correlated and experimental data was calculated and compared as the index of validity and accuracy for different modeling systems. In this basis it was realized that the semi-empirical equations especially Modified MST can accurately support the theoretical studies on phase equilibrium behavior of quinine–SCCO2 media. Among the cubic equations of state DPGT within two-parametric vd W mixing rules provided the best data fitting and PR within one-parametric vd W mixing rules demonstrated the highest deviation respecting to the experimental data. Overall, in each individual modeling system the best fitting was observed on the data points attained at 318 K, which could be perhaps due to the moderate thermodynamic state of supercritical phase.
出处 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2017年第5期641-645,共5页 中国化学工程学报(英文版)
基金 Supported by the National Natural Science Foundation of China(20976103)
关键词 超临界二氧化碳 溶解度 计算 奎宁 立方型状态方程 建模系统 实验数据 测定 Supercritical fluid Solubility Semi-empirical model Iso-fugacity Quinine
  • 相关文献

参考文献1

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部