期刊文献+

一类具有单调功能反应函数的随机恒化器模型的渐近行为分析 被引量:1

Asymptotic Behavior of A Stochastic Chemostat Model With A Monotone Response Functions
下载PDF
导出
摘要 考虑到环境噪声对系统的整体影响,建立一类具有单调功能反应函数的随机恒化器模型。利用It公式验证随机模型正解的全局存在唯一性;通过构造Lyapunov函数,证明当噪声强度较小时,系统的解将围绕相应确定性模型的平衡点振荡;最后,根据Hasminskii定理证明系统平稳分布的存在性。所得模型及结论将现有结果推广至一般情形。 We construct a stochastic Chemostat model with a monotone response functions,where stochastic perturbations are a white noise type which are directly proportional to the density of microorganism and substrate. By using the It8 formula,we obtain the global existence and unique of the positive solution. Then we show that the solution of the stochastic model spirals around the corresponding equilibrium of the deterministic model when the noise intensity is less than some values. Finally,we prove that there exists a stationary distribution by use of the Hasminskii theorem. Our models and results are extended to the general case.
作者 孙明娟 张鑫 张佳凡 雷玉元 刘雪炜 SUN Mingjuan ZHANG Xin ZHANG Jiafan LEI Yuyuan LIU Xuewei(School of Mathematics and Computer Science, Yan' an University, Yan' an 716000, China)
出处 《贵州大学学报(自然科学版)》 2017年第3期1-5,14,共6页 Journal of Guizhou University:Natural Sciences
基金 国家自然科学基金项目资助(11471007) 国家级大学生创新创业训练计划项目资助(201510719280 201510719274) 延安大学自然科学专项基金项目资助(YDKY2013-14 YD2015-10)
关键词 单调功能反应函数 恒化器 LYAPUNOV函数 It公式 稳定性 LIPSCHITZ条件 monotone response functions Chemostat Lyapunovfunction It8 formula stability Lipschitz condition
  • 相关文献

参考文献5

二级参考文献51

  • 1王凯,滕志东.一类具有营养液循环的脉冲注入恒化器模型的动力学研究(英文)[J].生物数学学报,2014,29(2):199-216. 被引量:5
  • 2Monod J. La technique de culture continue, theorie et applications[J]. Ann Inst Pasteur, 1950, 79: 390-410.
  • 3Novick A, Szilard L. Description of the chemostat[J]. Science, 1950, 112: 215-216.
  • 4Smith H, Waltman P. The Theory of the Chemostat[M]. Cambridge: Cambridge University Press, 1995.
  • 5Monod J. Recherches sur la Croissance des Cultures Bacteriennes[M]. Paris: Herman Press, 1942.
  • 6Jiang Daqing, Ji Chunyan, Shi Ningzhong. The long time behavior of DI SIR epidemic model with stochastic perturbation[J]. J Math Anal Appl, 2010, 372: 162-180.
  • 7Hu Guixin, Wang Ke. Stability in distribution of neutral stochastic functional differential equations with Markovian switching[J]. J Math Anal Appl, 2012, 385:757 - 769.
  • 8Mao X R, Marion G, Renshaw E. Asymptotic behaviour of the stochastic Lotka-Volterra[J]. J Math Anal Appl, 2003, 287: 141-156.
  • 9Yuan Chengjun, Jiang Daqing, O'Regan D, Agarwal R P. Stochastically asymptotically stability of the multi-group SEIR and SIR models with random perturbation[J]. Comm Nonl Sei Numer Simul, 2012, 17:2501 - 2516.
  • 10Yang Qingshan, Jiang Daqing, Shi Ningzhong. The ergodicity and extinction of stochasti- cally perturbed SIR and SEIR epidemic models with saturated incidence[J]. J Math Anal Appl, 2012, 388: 248- 271.

共引文献15

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部