期刊文献+

二维变空间分数阶扩散方程微分阶数的数值反演

Numerical Inversion for the Fractional Order in the Two-dimensional Variable-order Space-fractional Diffusion Equation
下载PDF
导出
摘要 探讨二维变空间分数阶扩散方程,应用改进了的Grunwald-Letnikov分数阶导数定义对方程进行离散,建立了隐式差分格式,并给出数值算例。进一步讨论由最终时刻观测数据确定微分阶数的反问题,并应用同伦正则化算法进行数值反演模拟。 An implicit finite difference scheme is introduced to solve the 2-D variable-order space diffusion equation,and an inverse problem of determining the variable fractional order is set forth using the additional measurements at the last minute.The homotopy regularization algorithm is applied to solve the inverse problem,and numerical examples are presented.
作者 刘迪 LIU Di(Guangzhou Maritime University ,Guangzhou 510725 ,China)
机构地区 广州航海学院
出处 《滨州学院学报》 2017年第2期45-51,共7页 Journal of Binzhou University
基金 国家自然科学基金资助项目(11071148 11371231)
关键词 变分数阶 差分格式 同伦正则化算法 反问题 variable-order array of difference homotopy regularization algorithm numerical inversion inverse problem
  • 相关文献

参考文献4

二级参考文献43

  • 1张淑琴.有限区间上的分数阶扩散波方程的解[J].西北师范大学学报(自然科学版),2005,41(2):10-13. 被引量:6
  • 2[1]Andreas Kirsch.AN Introduction to the Mathematical Theory of Inverse Problem.New York:Springer-Verlag,1996.
  • 3[2]Victor Isakov,Stefan Kindermann.Identification of the diffusion coefficient in one-dimensional parabolic equation,Inverse Problem,2000,16:665-680.
  • 4[3]BARBARA KALTENBACHER.Regularization by projection with a posterior discretization level choice for level choice for linear and nonlinear ill-posed problem.Inverse problem,2000,16:1523-1539.
  • 5LORENZO C F, HARTLEY T T. Initialization,conceptualization and application in the generalized fractional calculus[ M].Ohio;NASA/TP-1998 -208-208415, 1999: 1-63.
  • 6LORENZO C F, HARTLEY T T. Variable-order and distributed order fractional operators [J]. Nonlinear Dyn, 2002, 29( 1 -4).:57-98.
  • 7SUN Hongguang,CHEN Wen, CHEN Yang. Variable-order fractional differential operators in anomalous diffusion modeling[J]. Phys A, 2009, 388(21). :45864592.
  • 8MEERSCHAERT M, TADJERAN C. Finite difference approximations for fractional advection-dispersion flow equations [ J].J Comput Appl Math, 2004,172( 1). :65-77.
  • 9MILLER K S, ROSS B. An introduction to the fractional calculus and fractional differential equations[M]. New York: JohnWiley, 1993:80-125.
  • 10LIN Ran, LIU Fawang, ANH V,et al. Stability and convergence of a new explicit finite-difference approximation for the vari-able-order nonlinear fractional diffusion equation [ J]. Appl Math Comput,2009, 212(2). :435445.

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部