期刊文献+

离散时间平均场不定线性二次最优控制问题

Discrete-time Mean-field Stochastic LQ Optimal Control Problem
下载PDF
导出
摘要 研究一类离散时间平均场不定线性二次最优控制问题,将问题中的加权矩阵推广到不定的情况,通过最小值原理和拉格朗日乘子法得出一组黎卡提差分方程,以及最优控制的状态反馈表达式,得出黎卡提方程的有解性是最优控制存在的充分条件,并且求出最优的性能指标。 This paper studies a class of discrete time mean-field indefinite linear quadratic optimal control problem.Weighted matrix in question is extended to the uncertain situation,and a set of Riccati differential equations and the optimal state feedback control are obtained by means of the minimum principle and Lagrange multiplier method.Thus the solution of the Riccati equation is a sufficient condition for the existence of the optimal control,and the optimum performance is determined.
作者 于合谣 刘蕊蕊 冀鹏飞 YU He-yao LIU Rui-rui JI Peng-fei(College of Mathematics and Systems Science Shandong University of Science and Technology ,Qingdao 266590,Chin)
出处 《滨州学院学报》 2017年第2期52-58,共7页 Journal of Binzhou University
基金 国家自然科学基金资助项目(61402265) 山东科技大学研究生创新基金(SDKDYC170344) 山东省泰山学者研究基金项目(2015TDJH105) 青岛博士后应用研究项目(2016118)
关键词 平均场 拉格朗日乘子法 最小值原理 最优控制 mean field Lagrange multiplier method minimum principle optimal control
  • 相关文献

参考文献7

二级参考文献33

  • 1WUZhen.FORWARD-BACKWARD STOCHASTIC DIFFERENTIAL EQUATIONS, LINEAR QUADRATIC STOCHASTIC OPTIMAL CONTROL AND NONZERO SUM DIFFERENTIAL GAMES[J].Journal of Systems Science & Complexity,2005,18(2):179-192. 被引量:13
  • 2张维海.自由终端随机最优调节器的注记[J].控制理论与应用,2006,23(1):135-138. 被引量:1
  • 3黄玉林,张维海.约束随机线性二次最优控制的研究[J].自动化学报,2006,32(2):246-254. 被引量:7
  • 4Arriojas M, Hu Y, Mohammed S E A, et al. A delay Black and Scholes formula. Stoch Anal Appl, 2007, 25:471 -492.
  • 5Mohammed S E A. Stochastic Functional Differential Equations. London: Pitman, 1984.
  • 6Elsanousi I, Oksendal B, Sulem A. Some solvable stochastic control problems with delay. Stochastics, 2000, 71:69 89.
  • 7Larrsen B, Dynamic programming in stochastic control of systems with delay. Stochastics, 2002, 74:651-673.
  • 8Fuhrman M, Masiero F, Tessitore G. Stochastic equations with delay: optimal control via BSDEs and regular solutions of Hamilton-Jacobi-Bellman equations. SIAM J Control Optim, 2010, 48:4624- 4651.
  • 9Oksendal B, Sulem A. A maximum principle for optimal control of stochastic systems with delay, with applications to finance. In: Menaldi J M, Rofman E, Sulem A, eds. Optimal Control and Partial Differential Equations. Amsterdam: ISO Press, 2000, 64- 79.
  • 10Oksendal B, Sulem A, Zhang T S. Optimal control of stochastic delay equations and time-advanced backward stochastic differential equations. Adv Appl Prob, 2011, 43:572- 596.

共引文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部