期刊文献+

基于小波相邻系数降噪的滚动轴承早期微弱故障时频特征提取 被引量:5

Time-frequency feature extraction of rolling bearing's early weak fault based on wavelet de-noising using neighboring coefficients
原文传递
导出
摘要 将小波相邻系数降噪与时频小波切片变换(FSWT)相结合用于滚动轴承的早期微弱故障时频特征提取,通过对滚动轴承加速疲劳试验早期微弱故障振动数据进行分析,结果表明:小波相邻系数可以有效降低淹没滚动轴承早期微弱故障特征的背景噪声;时频小波切片变换方法能有效提取出经小波相邻系数降噪后振动信号的时频特征,即滚动轴承发生故障时的特征频率及其谐频成分,验证了所述方法的有效性.此外,通过与谱峭度时频分析结果的对比,证明所述方法更能准确扑捉到滚动轴承发生早期微弱故障时的时频特性,突出了所述方法的优越性. The wavelet de-noising using neighboring coefficients and frequency slice wavelet transform (FSWT) were combined for weak fault time-frequency feature extraction of rolling bearing.Based on the analysis results of the vibration data of rolling element bearing's early weak fault,the strong background noise of rolling bearing can be decreased effectively by the wavelet de-nosing using neighboring coefficients method.Furthermore,the denoised signal was handled by the FSWT method and better time-frequency feature extraction result was obtained compared with the method using FSWT directly,so the effectiveness of the proposed method was verified.Besides,the advantages of the proposed method were also verified by comparing with other time-frequency method such as spectral kurtosis.
出处 《航空动力学报》 EI CAS CSCD 北大核心 2017年第5期1266-1272,共7页 Journal of Aerospace Power
基金 国家青年自然科学基金(51405453 51205371) 郑州轻工业学院博士科研基金
关键词 小波相邻系数降噪 滚动轴承 时频小波切片变换(FSWT) 早期微弱故障 特征提取 wavelet de-noising using neighboring coefficients rolling bearings frequency slice wavelet transform (FSWT) early weak fault feature extraction
  • 相关文献

参考文献1

二级参考文献13

  • 1夏仁波,刘伟军,王华兵.特征保持的散乱点集光顺算法[J].仪器仪表学报,2006,27(z1):7-9. 被引量:2
  • 2JiZhong JinTao QinShuren.SIGNAL FEATURE EXTRACTION BASED UPON INDEPENDENT COMPONENT ANALYSIS AND WAVELET TRANSFORM[J].Chinese Journal of Mechanical Engineering,2005,18(1):123-126. 被引量:7
  • 3彭志科,卢文秀,褚福磊.新的基于小波变换的振动信号消噪方法[J].机械工程学报,2006,42(4):18-22. 被引量:35
  • 4TAUBIN G. A signal processing approach to fair surface design[C]//Proceedings of the 22nd annual conference on Computer graphics and interactive techniques, August 6-11,1995, Los Angeles, CA, USA. NY: ACM Press, 1995: 351-358.
  • 5DONOHO D L, JOHNSTONE I, KERGYACHARIAN G, et al. Density estimation by wavelet thresholding[J]. Annals of Statistics, 1996, 24(2): 508-538.
  • 6MELACHLAN G, PEEL D. Finite mixture models[M]. New York: Wiley & Sons, 2000.
  • 7DEMPSTER A, LAIRD N, RUBIN D. Maximum likehood estimation from incomplete data via the EM algorithm[J]. J.Royal Statistical Sol.B, 1977, 39(1): 1-38.
  • 8MIHCAK M, KOZINTSEV I, RAMCHANDRAN K, et al. Lowcomplexity image denoising based on statistical modeling of wavelet coefficients [J]. IEEE Signal Processing Letters, 1999, 6(12): 300-303.
  • 9CHANG S G, YU Bin, VETTERLI M. Spatially adaptive thresholding with context modeling for image denosing[J]. IEEE Transactions on Image Processing, 2000, 9(9): 1 522-1 531.
  • 10李建勋,柯熙政,郭华.小波方差与小波熵在信号特征提取中的应用[J].西安理工大学学报,2007,23(4):365-369. 被引量:29

共引文献32

同被引文献43

引证文献5

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部