期刊文献+

光纤时间频率传递研究发展态势的文献计量分析 被引量:7

Status and Trends of Time and Frequency Transfer via Optical Fiber Based on Bibliometrics
原文传递
导出
摘要 随着社会经济和科学技术的高速发展,对时间频率传递和同步的需求越来越高,特别是在基础科学、深空探测、现代高科技装备和系统中,时间的精确性及稳定性至关重要。基于光纤的时间频率传递成为未来高精度地面时间同步网络的主要发展趋势。该研究以INSPEC数据库为数据源,采用专业数据分析工具Thomson Data Analyzer(TDA)对光纤时间频率传递研究论文进行数据挖掘和定量分析,探讨该领域的研究现状、主要研究力量、研究热点及发展趋势,以期为时间频率科研工作者、决策者以及我国时间频率系统的发展、创新提供参考。 With the rapid development of social economy and science and technology, the high-precision demand of time and fi'equency transfer is increasing, especially in basic scientific research, deep-space missions, modern advanced equipment and systems, and the accuracy and stability of time is essential. Among the available methods of time transfer, time transmission along optical fibers will become the trend of the future high-precision ground time transfer network. This work based on the scientific research articles retrieved fi'om the INSPEC database, data mining and quantitative analysis of the papers on time and frequency transfer via optical fiber research has been obtained by using the statistical tools of the Thomson Data Analyzer (TDA). The number of publications per year, the details of countries and research institutes, research focus and the subject categories were analyzed. The objectives of this paper were to assess the industry development scheme in this field and to provide directions for potential research in the future.
出处 《科学观察》 2017年第3期24-32,共9页 Science Focus
关键词 光纤 时间频率传递 文献计量研究热点 发展态势 optical fiber, time and frequency transfer, bibliometrics, research focus, developing tendency
  • 相关文献

参考文献6

二级参考文献90

  • 1Bauch A, Achkar J, Bize S, et al. Comparison between frequency standards in Europe and USA at the 10-15 uncertainty level[J]. Metrologia, 2006, 43 (1): 109-120.
  • 2Levine J. A review of time and frequency transfer methods[J]. Metrologia, 2008, 45(6): 162-174.
  • 3Michito I, Mizuhiko H, Kuniyasu I, et al. Two-way satellite time and frequency transfer networks in pacific rim region[J[. IEEE Transactions on Instruments Measurement, 2001, 50(2): 559-562.
  • 4Allan D W, Weiss M A. Accurate time and frequency transfer during common-view of a GPS satellite[C]. 34th Annual Frequency Control Symposium, Fort Monmouth, New Jersey, USA, May 28-30, 1980.
  • 5Fortier T M, Kirchner M S, Quinlan F, et al. Generation of uhrastable microwaves via optical frequency division[J]. Nature Photonics, 2011, 5: 425-429.
  • 6Jiang Y Y, Ludlow A D, Lemke N D, et al. Making optical atomic clocks more stable with 10-16 level laser stabilization[J[. Nature Photonics, 2011, 5: 158-161.
  • 7Ludlow A D, Zelevinsky T, Campbell G K, et al. Sr lattice clock at 1 x 10-16 fractional uncertainty by remote optical evaluation with a Ca clock [J]. Science, 2008, 319(5871): 1805-1808.
  • 8Hong F L, Musha M, Takamoto M, et al. Measuring the frequency of a Sr optical lattice clock using a 120 km coherent optical transfer[J]. Optics Letters, 2009, 34(5): 692-694.
  • 9Predehl K, Grosche G, Raupach S M F, et al. A 920-kilometer optical fiber link for frequency metrology at the 19th decimal place[J]. Science, 2012, 336(6080): 441-444.
  • 10Foreman S M, Ludlow A D, Miranda M H G, et al. Coherent optical phase transfer over a 32-km fiber with 1 s instability at 10-17[J]. Physical Review Letters, 2007, 99(15): 153601.

共引文献61

同被引文献63

引证文献7

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部